Dylan Riffle is a Computational Biology and Medicine Ph.D. Student at Weill Cornell Medicine.

Posts

Understanding Transcriptional Regulatory Redundancy by Learnable Global Subset Perturbations

Transcriptional regulation through cis-regulatory elements (CREs) is crucial for numerous biological functions, with its disruption potentially leading to various diseases. It is well-known that these CREs often exhibit redundancy, allowing them to compensate for each other in response to external disturbances, highlighting the need for methods to identify CRE sets that collaboratively regulate gene expression effectively. To address this, we introduce GRIDS, an in silico computational method that approaches the task as a global feature explanation challenge to dissect combinatorial CRE effects in two phases. First, GRIDS constructs a differentiable surrogate function to mirror the complex gene regulatory process, facilitating cross-translations in single-cell modalities. It then employs learnable perturbations within a state transition framework to offer global explanations, efficiently navigating the combinatorial feature landscape. Through comprehensive bench marks, GRIDS demonstrates superior explanatory capabilities compared to other leading methods. Moreover, GRIDS s global explanations reveal intricate regulatory redundancy across cell types and states, underscoring its potential to advance our understanding ofcellular regulation in biological research.

Impeller: A Path-based Heterogeneous Graph Learning Method for Spatial Transcriptomic Data Imputation

Recent advances in spatial transcriptomics allow spatially resolved gene expression measurements with cellular or even sub-cellular resolution, directly characterizing the complex spatiotemporal gene expression landscape and cell-to-cell interactions in their native microenvironments. Due to technology limitations, most spatial transcriptomic technologies still yield incomplete expression measurements with excessive missing values. Therefore, gene imputation is critical to filling in missing data, enhancing resolution, and improving overall interpretability. However, existing methods either require additional matched single-cell RNA-seq data, which is rarely available, or ignore spatial proximity or expression similarity information