Interpretable Skill Learning for Dynamic Treatment Regimes through Imitation

Interpretable Skill Learning for Dynamic Treatment Regimes through Imitation Imitation learning that mimics experts’ skills from their demonstrations has shown great success in discovering dynamic treatment regimes, i.e., the optimal decision rules to treat an individual patient based on related evolving treatment and covariate history. Existing imitation learning methods, however, still lack the capability to interpret the underlying rationales of the learned policy in a faithful way. Moreover, since dynamic treatment regimes for patients often exhibit varying patterns, i.e., symptoms that transit from one to another, the flat policy learned by a vanilla imitation learning method is typically undesired. To this end, we propose an Interpretable Skill Learning (ISL) framework to resolve the aforementioned challenges for dynamic treatment regimes through imitation. The key idea is to model each segment of experts’ demonstrations with a prototype layer and integrate it with the imitation learning layer to enhance the interpretation capability. On one hand, the ISL framework is able to provide interpretable explanations by matching the prototype to exemplar segments during the inference stage, which enables doctors to perform reasoning of the learned demonstrations based on human-understandable patient symptoms and lab results. On the other hand, the obtained skill embedding consisting of prototypes serves as conditional information to the imitation learning layer, which implicitly guides the policy network to provide a more accurate demonstration when the patients’ state switches from one stage to another. Thoroughly empirical studies demonstrate that our proposed ISL technique can achieve better performance than state-of-the-art methods. Moreover, the proposed ISL framework also exhibits good interpretability which cannot be observed in existing methods.

Adversarial Cooperative Imitation Learning for Dynamic Treatment Regimes

Adversarial Cooperative Imitation Learning for Dynamic Treatment Regimes Recent developments in discovering dynamic treatment regimes (DTRs) have heightened the importance of deep reinforcement learning (DRL) which are used to recover the doctor’s treatment policies. However, existing DRL-based methods expose the following limitations: 1) supervised methods based on behavior cloning suffer from compounding errors, 2) the self-defined reward signals in reinforcement learning models are either too sparse or need clinical guidance, 3) only positive trajectories (e.g. survived patients) are considered in current imitation learning models, with negative trajectories (e.g. deceased patients) been largely ignored, which are examples of what not to do and could help the learned policy avoid repeating mistakes. To address these limitations, in this paper, we propose the adversarial cooperative imitation learning model, ACIL, to deduce the optimal dynamic treatment regimes that mimics the positive trajectories while differs from the negative trajectories. Specifically, two discriminators are used to help achieve this goal: an adversarial discriminator is designed to minimize the discrepancies between the trajectories generated from the policy and the positive trajectories, and a cooperative discriminator is used to distinguish the negative trajectories from the positive and generated trajectories. The reward signals from the discriminators are utilized to refine the policy for dynamic treatment regimes. Experiments on the publicly real-world medical data demonstrate that ACIL improves the likelihood of patient survival and provides better dynamic treatment regimes with the exploitation of information from both positive and negative trajectories.