Edge Cloud refers to a distributed computing paradigm where computing resources and services are located closer to the “edge” of the network, near the source of data generation or consumption. It combines elements of both edge computing and cloud computing to bring computational capabilities closer to end-users or devices.

Posts

DyCo: Dynamic, Contextualized AI Models

Devices with limited computing resources use smaller AI models to achieve low-latency inferencing. However, model accuracy is typically much lower than the accuracy of a bigger model that is trained and deployed in places where the computing resources are relatively abundant. We describe DyCo, a novel system that ensures privacy of stream data and dynamically improves the accuracy of small models used in devices. Unlike knowledge distillation or federated learning, DyCo treats AI models as black boxes. DyCo uses a semi-supervised approach to leverage existing training frameworks and network model architectures to periodically train contextualized, smaller models for resource-constrained devices. DyCo uses a bigger, highly accurate model in the edge-cloud to auto-label data received from each sensor stream. Training in the edge-cloud (as opposed to the public cloud) ensures data privacy, and bespoke models for thousands of live data streams can be designed in parallel by using multiple edge-clouds. DyCo uses the auto-labeled data to periodically re-train, stream-specific, bespoke small models. To reduce the periodic training costs, DyCo uses different policies that are based on stride, accuracy, and confidence information.We evaluate our system, and the contextualized models, by using two object detection models for vehicles and people, and two datasets (a public benchmark and another real-world proprietary dataset). Our results show that DyCo increases the mAP accuracy measure of small models by an average of 16.3% (and up to 20%) for the public benchmark and an average of 19.0% (and up to 64.9%) for the real-world dataset. DyCo also decreases the training costs for contextualized models by more than an order of magnitude.

DataXe: A System for Application Self-optimization in Serverless Edge Computing Environments

A key barrier to building performant, remotely managed and self-optimizing multi-sensor, distributed stream processing edge applications is high programming complexity. We recently proposed DataX [1], a novel platform that improves programmer productivity by enabling easy exchange, transformations, and fusion of data streams on virtualized edge computing infrastructure. This paper extends DataX to include (a) serverless computing that automatically scales stateful and stateless analytics units (AUs) on virtualized edge environments, (b) novel communication mechanisms that efficiently communicate data among analytics units, and (c) new techniques to promote automatic reuse and sharing of analytics processing across multiple applications in a lights out, serverless computing environment. Synthesizing these capabilities into a single platform has been substantially more transformative than any available stream processing system for the edge. We refer to this enhanced and efficient version of DataX as DataXe. To the best of our knowledge, this is the first serverless system for stream processing. For a real-world video analytics application, we observed that the performance of the DataXe implementation of the analytics application is about 3X faster than a standalone implementation of the analytics application with custom, handcrafted communication, multiprocessing and allocation of edge resources.