Embedding is the process of mapping objects or data from one space to another, typically from a discrete or high-dimensional space to a continuous vector space. Embeddings are used to represent entities in a format suitable for machine learning.


At the Speed of Sound: Efficient Audio Scene Classification

Efficient audio scene classification is essential for smart sensing platforms such as robots, medical monitoring, surveillance, or autonomous vehicles. We propose a retrieval-based scene classification architecture that combines recurrent neural networks and attention to compute embeddings for short audio segments. We train our framework using a custom audio loss function that captures both the relevance of audio segments within a scene and that of sound events within a segment. Using experiments on real audio scenes, we show that we can discriminate audio scenes with high accuracy after listening in for less than a second. This preserves 93% of the detection accuracy obtained after hearing the entire scene.

Deep Learning IP Network Representations

We present DIP, a deep learning-based framework to learn structural properties of the Internet, such as node clustering or distance between nodes. Existing embedding-based approaches use linear algorithms on a single source of data, such as latency or hop count information, to approximate the position of a node in the Internet. In contrast, DIP computes low-dimensional representations of nodes that preserve structural properties and non-linear relationships across multiple, heterogeneous sources of structural information, such as IP, routing, and distance information. Using a large real-world data set, we show that DIP learns representations that preserve the real-world clustering of the associated nodes and predicts the distance between them more than 30% better than a mean-based approach. Furthermore, DIP accurately imputes hop count distance to unknown hosts (i.e., not used in training) given only their IP addresses and routable prefixes. Our framework is extensible to new data sources and applicable to a wide range of problems in network monitoring and security.