Posts

Source-Free Video Domain Adaptation with Spatial-Temporal-Historical Consistency Learning

Source-Free Video Domain Adaptation with Spatial-Temporal-Historical Consistency Learning Source-free domain adaptation (SFDA) is an emerging research topic that studies how to adapt a pretrained source model using unlabeled target data. It is derived from unsupervised domain adaptation but has the advantage of not requiring labeled source data to learn adaptive models. This makes it particularly useful in real-world applications where access to source data is restricted. While there has been some SFDA work for images, little attention has been paid to videos. Naively extending image-based methods to videos without considering the unique properties of videos often leads to unsatisfactory results. In this paper, we propose a simple and highly flexible method for Source-Free Video Domain Adaptation (SFVDA), which extensively exploits consistency learning for videos from spatial, temporal, and historical perspectives. Our method is based on the assumption that videos of the same action category are drawn from the same low-dimensional space, regardless of the spatio-temporal variations in the high-dimensional space that cause domain shifts. To overcome domain shifts, we simulate spatio-temporal variations by applying spatial and temporal augmentations on target videos, and encourage the model to make consistent predictions from a video and its augmented versions. Due to the simple design, our method can be applied to various SFVDA settings, and experiments show that our method achieves state-of-the-art performance for all the settings.

T-Cell Receptor-Peptide Interaction Prediction with Physical Model Augmented Pseudo-Labeling

T-Cell Receptor-Peptide Interaction Prediction with Physical Model Augmented Pseudo-Labeling Predicting the interactions between T-cell receptors (TCRs) and peptides is crucial for the development of personalized medicine and targeted vaccine in immunotherapy. Current datasets for training deep learning models of this purpose remain constrained without diverse TCRs and peptides. To combat the data scarcity issue presented in the current datasets, we propose to extend the training dataset by physical modeling of TCR-peptide pairs. Specifically, we compute the docking energies between auxiliary unknown TCR-peptide pairs as surrogate training labels. Then, we use these extended example-label pairs to train our model in a supervised fashion. Finally, we find that the AUC score for the prediction of the model can be further improved by pseudo-labeling of such unknown TCR-peptide pairs (by a trained teacher model), and re-training the model with those pseudo-labeled TCR-peptide pairs. Our proposed method that trains the deep neural network with physical modeling and data-augmented pseudo-labeling improves over baselines in the available two datasets. We also introduce a new dataset that contains over 80,000 unknown TCR-peptide pairs with docking energy scores.

Fast Few-shot Debugging for NLU Test Suites

Fast Few-shot Debugging for NLU Test Suites We study few-shot debugging of transformer based natural language understanding models, using recently popularized test suites to not just diagnose but correct a problem. Given a few debugging examples of a certain phenomenon, and a held-out test set of the same phenomenon, we aim to maximize accuracy on the phenomenon at a minimal cost of accuracy on the original test set. We examine several methods that are faster than full epoch retraining. We introduce a new fast method, which samples a few in-danger examples from the original training set. Compared to fast methods using parameter distance constraints or Kullback-Leibler divergence, we achieve superior original accuracy for comparable debugging accuracy.

Fast Few Shot Debugging for NLU Test Suites (arXiv)

Read Fast Few shot Debugging for NLU Test Suites (arXiv) from our Machine Learning Department. We study few shot debugging of transformer based natural language understanding models, using recently popularized test suites to not just diagnose but correct a problem. Given a few debugging examples of a certain phenomenon, and a held out test set of the same phenomenon, we aim to maximize accuracy on the phenomenon at a minimal cost of accuracy on the original test set. We examine several methods that are faster than full epoch retraining. We introduce a new fast method, which samples a few in danger examples from the original training set. Compared to fast methods using parameter distance constraints or Kullback Leibler divergence, we achieve superior original accuracy for comparable debugging accuracy.

SplitBrain: Hybrid Data and Model Parallel Deep Learning

SplitBrain: Hybrid Data and Model Parallel Deep Learning The recent success of deep learning applications has coincided with those widely available powerful computational resources for training sophisticated machine learning models with huge datasets. Nonetheless, training large models such as convolutional neural networks using model parallelism (as opposed to data parallelism) is challenging because the complex nature of communication between model shards makes it difficult to partition the computation efficiently across multiple machines with an acceptable trade off. This paper presents SplitBrain, a high performance distributed deep learning framework supporting hybrid data and model parallelism. Specifically, SplitBrain provides layer specific partitioning that co locates compute intensive convolutional layers while sharding memory demanding layers. A novel scalable group communication is proposed to further improve the training throughput with reduced communication overhead. The results show that SplitBrain can achieve nearly linear speedup while saving up to 67% of memory consumption for data and model parallel VGG over CIFAR 10.

Towards Robustness of Deep Neural Networks via Networks via Regularization

Towards Robustness of Deep Neural Networks via Networks via Regularization Recent studies have demonstrated the vulnerability of deep neural networks against adversarial examples. In-spired by the observation that adversarial examples often lie outside the natural image data manifold and the intrinsic dimension of image data is much smaller than its pixel space dimension, we propose to embed high-dimensional input images into a low-dimensional space and apply regularization on the embedding space to push the adversarial examples back to the manifold. The proposed framework is called Embedding Regularized Classifier (ER-Classifier), which improves the adversarial robustness of the classifier through embedding regularization. Besides improving classification accuracy against adversarial examples, the framework can be combined with detection methods to detect adversarial examples. Experimental results on several benchmark datasets show that, our proposed framework achieves good performance against strong adversarial at-tack methods.

Improving neural network robustness through neighborhood preserving layers

Improving neural network robustness through neighborhood preserving layers One major source of vulnerability of neural nets in classification tasks is from overparameterized fully connected layers near the end of the network. In this paper, we propose a new neighborhood preserving layer which can replace these fully connected layers to improve the network robustness. Networks including these neighborhood preserving layers can be trained efficiently. We theoretically prove that our proposed layers are more robust against distortion because they effectively control the magnitude of gradients. Finally, we empirically show that networks with our proposed layers are more robust against state-of-the-art gradient descent-based attacks, such as a PGD attack on the benchmark image classification datasets MNIST and CIFAR10.

Austere Flash Caching with Deduplication and Compression

Austere Flash Caching with Deduplication and Compression Modern storage systems leverage flash caching to boost I/O performance, and enhancing the space efficiency and endurance of flash caching remains a critical yet challenging issue in the face of ever-growing data-intensive workloads. Deduplication and compression are promising data reduction techniques for storage and I/O savings via the removal of duplicate content, yet they also incur substantial memory overhead for index management. We propose AustereCache, a new flash caching design that aims for memory-efficient indexing, while preserving the data reduction benefits of deduplication and compression. AustereCache emphasizes austere cache management and proposes different core techniques for efficient data organization and cache replacement, so as to eliminate as much indexing metadata as possible and make lightweight in-memory index structures viable. Trace-driven experiments show that our AustereCache prototype saves 69.9-97.0% of memory usage compared to the state-of-the-art flash caching design that supports deduplication and compression, while maintaining comparable read hit ratios and write reduction ratios and achieving high I/O throughput.

Optimal Transport Classifier: Defending Against Adversarial Attacks by Regularized Deep Embedding

Optimal Transport Classifier: Defending Against Adversarial Attacks by Regularized Deep Embedding Recent studies have demonstrated the vulnerability of deep convolutional neural networks against adversarial examples. Inspired by the observation that the intrinsic dimension of image data is much smaller than its pixel space dimension and the vulnerability of neural networks grows with the input dimension, we propose to embed high-dimensional input images into a low-dimensional space to perform classification. However, arbitrarily projecting the input images to a low-dimensional space without regularization will not improve the robustness of deep neural networks. Leveraging optimal transport theory, we propose a new framework, Optimal Transport Classifier (OT-Classifier), and derive an objective that minimizes the discrepancy between the distribution of the true label and the distribution of the OT-Classifier output. Experimental results on several benchmark datasets show that, our proposed framework achieves state-of-the-art performance against strong adversarial attack methods.