Event Sequence Modeling refers to the process of capturing and analyzing the sequential patterns of events over time. In various fields such as machine learning, natural language processing, and signal processing, event sequence modeling aims to understand and predict the order and timing of events within a series. This can involve techniques like time series analysis, recurrent neural networks (RNNs), or other sequential modeling approaches.


CAT: Beyond Efficient Transformer for Content-Aware Anomaly Detection in Event Sequences

It is critical and important to detect anomalies in event sequences, which becomes widely available in many application domains. Indeed, various efforts have been made to capture abnormal patterns from event sequences through sequential pattern analysis or event representation learning. However, existing approaches usually ignore the semantic information of event content. To this end, in this paper, we propose a self-attentive encoder-decoder transformer framework, Content-Aware Transformer CAT, for anomaly detection in event sequences. In CAT, the encoder learns preamble event sequence representations with content awareness, and the decoder embeds sequences under detection into a latent space, where anomalies are distinguishable. Specifically, the event content is first fed to a content-awareness layer, generating representations of each event. The encoder accepts preamble event representation sequence, generating feature maps. In the decoder, an additional token is added at the beginning of the sequence under detection, denoting the sequence status. A one-class objective together with sequence reconstruction loss is collectively applied to train our framework under the label efficiency scheme. Furthermore, CAT is optimized under a scalable and efficient setting. Finally, extensive experiments on three real-world datasets demonstrate the superiority of CAT.

Multi-Scale One-Class Recurrent Neural Networks for Discrete Event Sequence Anomaly Detection

Discrete event sequences are ubiquitous, such as an ordered event series of process interactions in Information and Communication Technology systems. Recent years have witnessed increasing efforts in detecting anomalies with discrete event sequences. However, it remains an extremely difficult task due to several intrinsic challenges including data imbalance issues, discrete property of the events, and sequential nature of the data. To address these challenges, in this paper, we propose OC4Seq, a multi-scale one-class recurrent neural network for detecting anomalies in discrete event sequences. Specifically, OC4Seq integrates the anomaly detection objective with recurrent neural networks (RNNs) to embed the discrete event sequences into latent spaces, where anomalies can be easily detected. In addition, given that an anomalous sequence could be caused by either individual events, subsequences of events, or the whole sequence, we design a multi-scale RNN framework to capture different levels of sequential patterns simultaneously. We fully implement and evaluate OC4Seq on three real-world system log datasets. The results show that OC4Seq consistently outperforms various representative baselines by a large margin. Moreover, through both quantitative and qualitative analysis, the importance of capturing multi-scale sequential patterns for event anomaly detection is verified. To encourage reproducibility, we make the code and data publicly available.