Face Anti-Spoofing refers to the technology and techniques employed to detect and prevent the presentation of fake or spoofed facial information during the authentication process. The goal is to enhance the security of facial recognition systems by ensuring that they can differentiate between genuine facial features and attempts to deceive the system using images, videos, or other artificial means.

Posts

Domain Generalization Guided by Gradient Signal to Noise Ratio of Parameters

Overfitting to the source domain is a common issue in gradient-based training of deep neural networks. To compensate for the over-parameterized models, numerous regularization techniques have been introduced such as those based on dropout. While these methods achieve significant improvements on classical benchmarks such as ImageNet, their performance diminishes with the introduction of domain shift in the test set i.e. when the unseen data comes from a significantly different distribution. In this paper, we move away from the classical approach of Bernoulli sampled dropout mask construction and propose to base the selection on gradient-signal-to-noise ratio (GSNR) of network’s parameters. Specifically, at each training step, parameters with high GSNR will be discarded. Furthermore, we alleviate the burden of manually searching for the optimal dropout ratio by leveraging a meta-learning approach. We evaluate our method on standard domain generalization benchmarks and achieve competitive results on classification and face anti-spoofing problems.

Uncertainty Aware Physically Guided Proxy Tasks for Unseen Domain Face Anti-Spoofing

Face anti-spoofing (FAS) seeks to discriminate genuine faces from fake ones arising from any type of spoofing attack. Due to the wide variety of attacks, it is implausible to obtain training data that spans all attack types. We propose to leverage physical cues to attain better generalization on unseen domains. As a specific demonstration, we use physically guided proxy cues such as depth, reflection, and material to complement our main anti-spoofing (a.k.a liveness detection) task, with the intuition that genuine faces across domains have consistent face like geometry, minimal reflection, and skin material. We introduce a novel uncertainty-aware attention scheme that independently learns to weigh the relative contributions of the main and proxy tasks, preventing the over confident issue with traditional attention modules. Further, we propose attribute-assisted hard negative mining to disentangle liveness irrelevant features with liveness features during learning. We evaluate extensively on public benchmarks with intra-dataset and inter-dataset protocols. Our method achieves superior performance especially in unseen domain generalization for FAS.