Fatih Yaman NEC Labs America

Fatih Yaman

Senior Researcher

Optical Networking & Sensing

Posts

Constellation Design with Geometric and Probabilistic Shaping

A systematic study, including theory, simulation and experiments, is carried out to review the generalized pairwise optimization algorithm for designing optimized constellation. In order to verify its effectiveness, the algorithm is applied in three testing cases: 2-dimensional 8 quadrature amplitude modulation (QAM), 4-dimensional set-partitioning QAM, and probabilistic-shaped (PS) 32QAM. The results suggest that geometric shaping can work together with PS to further bridge the gap toward the Shannon limit.

Design and Comparison of Advanced Modulation Formats Based on Generalized Mutual Information

Generalized mutual information (GMI) has been comprehensively studied in multidimensional constellation and probabilistic-shaped (PS) constellation together with different forward error correction (FEC) coding schemes. The simulation results confirm that GMI is an efficient and accurate tool to compare their post-FEC performance. In particular for uniformly geometric-shaped constellation, the pre-FEC Q-factor is highly correlated with GMI though the correlation is reduced at lower FEC coding rate. Furthermore, GMI can be used to design optimized constellation together with generalized pairwise optimization algorithm to mitigate the GMI loss in non-Gray-mapped constellation. The GMI-optimized 32QAM (opt32) shows ~0.5 dB signal-to-noise ratio improvement between 3 and 4 b/s GMI in both simulated and experimental results. Optimized two-dimensional 8 QAM is also designed to show the consistent GMI improvement over multi-dimensional 8 QAM-equivalent formats. In simulations, PS-64 QAM outperforms opt32 when a long sequence block is used in the distribution matcher.