Fatih Yaman NEC Labs America

Fatih Yaman

Senior Researcher

Optical Networking & Sensing

Posts

Simultaneous Sensing and Communication in Optical Fibers

We explore two fiber sensing methods which enables coexistence with data transmission on DWDM fiber networks. Vibration detection and localization can be achieved by extracting optical phase from modified coherent transponders. Frequency-diverse chirped-pulse DAS with all-Raman amplification can improve SNR and achieves multi-span monitoring.

DAS over 1,007-km Hybrid Link with 10-Tb/s DP-16QAM Co-propagation using Frequency-Diverse Chirped Pulses (OFC)

We report the first distributed acoustic sensing (DAS) results over>1,000 km on a field-lab hybrid link using chirped-pulses with correlation detection and 20× frequency-diversity, achieving a sensitivity of 100 pa/√Hz at 20-meters spatial resolution.

Weight Pruning Techniques for Nonlinear Impairment Compensation using Neural Networks

Neural networks (NNs) are attractive for nonlinear impairment compensation applications in communication systems, such as optical fiber nonlinearity, nonlinearity of driving amplifiers, and nonlinearity of semiconductor optical amplifiers. Without prior knowledge of the transmission link or the hardware characteristics, optimal parameters are completely constructed from a data-driven approach by exploring training datasets, once the NN structure is given. On the other hand, due to computational power and energy consumption, especially in high-speed communication systems, the computational complexity of the optimized NN needs to be confined to the hardware, such as FPGA or ASIC without sacrificing its performance improvement. In this paper, two approaches are presented to accommodate the NN-based algorithms for high-speed communication systems. The first approach is to reduce computational complexity of the NN-based nonlinearity compensation algorithms on the basis of weight pruning (WP). WP can significantly reduce the computational complexity, especially because the nonlinear compensation task studied here results in a sparse NN. The authors have studied an enhanced approach of WP by imposing an additional restriction on the selection of non-zero weights on each hidden layer. The second approach is to implement NNs onto a silicon-photonic integrated platform, enabling power efficiency to be further improved without sacrificing the high-speed operation.

A Silicon Photonic-Electronic Neural Network for Fiber Nonlinearity Compensation

In optical communication systems, fibre nonlinearity is the major obstacle in increasing the transmission capacity. Typically, digital signal processing techniques and hardware are used to deal with optical communication signals, but increasing speed and computational complexity create challenges for such approaches. Highly parallel, ultrafast neural networks using photonic devices have the potential to ease the requirements placed on digital signal processing circuits by processing the optical signals in the analogue domain. Here we report a silicon photonic–electronic neural network for solving fibre nonlinearity compensation in submarine optical-fibre transmission systems. Our approach uses a photonic neural network based on wavelength-division multiplexing built on a silicon photonic platform compatible with complementary metal–oxide–semiconductor technology. We show that the platform can be used to compensate for optical fibre nonlinearities and improve the quality factor of the signal in a 10,080 km submarine fibre communication system. The Q-factor improvement is comparable to that of a software-based neural network implemented on a workstation assisted with a 32-bit graphic processing unit.

Guided Acoustic Brillouin Scattering Measurements In Optical Communication Fibers

Guided acoustic Brillouin (GAWBS) noise is measured using a novel, homodyne measurement technique for four commonly used fibers in long-distance optical transmission systems. The measurements are made with single spans and then shown to be consistent with separate multi-span long-distance measurements. The inverse dependence of the GAWBS noise on the fiber effective area is confirmed by comparing different fibers with the effective area varying between 80 µm2 and 150 µm2. The line broadening effect of the coating is observed, and the correlation between the width of the GAWBS peaks to the acoustic mode profile is confirmed. An extensive model of the GAWBS noise in long-distance fibers is presented, including corrections to some commonly repeated mistakes in previous reports. It is established through the model and verified with the measurements that the depolarized scattering caused by TR2m modes contributes twice as much to the optical noise in the orthogonal polarization to the original source, as it does to the noise in parallel polarization. Using this relationship, the polarized and depolarized contributions to the measured GAWBS noise is separated for the first time. As a result, a direct comparison between the theory and the measured GAWBS noise spectrum is shown for the first time with excellent agreement. It is confirmed that the total GAWBS noise can be calculated from fiber parameters under certain assumptions. It is predicted that the level of depolarized GAWBS noise created by the fiber may depend on the polarization diffusion length, and consequently, possible ways to reduce GAWBS noise are proposed. Using the developed theory, dependence of GAWBS noise on the location of the core is calculated to show that multi-core fibers would have a similar level of GAWBS noise no matter where their cores are positioned.

Nonlinear Impairment Compensation using Neural Networks

Neural networks are attractive for nonlinear impairment compensation applications in communication systems. In this paper, several approaches to reduce computational complexity of the neural network-based algorithms are presented.

Estimation of Core-Cladding Concentricity Error From GAWBS Noise Spectrum

CCCE in a 60-km fiber is estimated from its GAWBS noise spectrum by comparing the TR 1m modes with the R 0m modes. The estimated CCCE value 0.73 μm is consistent with conventional measurements of 0.6–0.8 μm.

Demonstration of photonic neural network for fiber nonlinearity compensation in long-haul transmission systems

We demonstrate the experimental implementation of photonic neural network for fiber nonlinearity compensation over a 10,080 km trans-pacific transmission link. Q-factor improvement of 0.51 dB is achieved with only 0.06 dB lower than numerical simulations.

Field and lab experimental demonstration of nonlinear impairment compensation using neural networks

Fiber nonlinearity is one of the major limitations to the achievable capacity in long distance fiber optic transmission systems. Nonlinear impairments are determined by the signal pattern and the transmission system parameters. Deterministic algorithms based on approximating the nonlinear Schrodinger equation through digital back propagation, or a single step approach based on perturbation methods have been demonstrated, however, their implementation demands excessive signal processing resources, and accurate knowledge of the transmission system. A completely different approach uses machine learning algorithms to learn from the received data itself to figure out the nonlinear impairment. In this work, a single-step, system agnostic nonlinearity compensation algorithm based on a neural network is proposed to pre-distort symbols at transmitter side to demonstrate ~0.6?dB Q improvement after 2800?km standard single-mode fiber transmission using 32 Gbaud signal. Without prior knowledge of the transmission system, the neural network tensor weights are constructed from training data thanks to the intra-channel cross-phase modulation and intra-channel four-wave mixing triplets used as input features.

Fiber Nonlinearity Compensation by Neural Networks

Neuron network (NN) is proposed to work together with perturbation-based nonlinearity compensation (NLC) algorithm by feeding with intra-channel cross-phase modulation (IXPM) and intra-channel four-wave mixing (IFWM) triplets. Without prior knowledge of the transmission link and signal pulse shaping/baudrate, the optimum NN architecture and its tensor weights are completely constructed from a data-driven approach by exploring the training datasets. After trimming down the unnecessary input tensors based on their weights, its complexity is further reduced by applying the trained NN model at the transmitter side thanks to the limited alphabet size of the modulation formats. The performance advantage of Tx-side NN-NLC is experimentally demonstrated using both single-channel and WDM-channel 32Gbaud dual-polarization 16QAM over 2800km transmission