Feature Extraction is the process of selecting and transforming raw data into a format that is more suitable for modeling. In the context of machine learning, it involves identifying and extracting the most relevant information or features from the input data.


Time Series Prediction and Classification using Silicon Photonic Neuron with Self-Connection

We experimentally demonstrated the real-time operation of a photonic neuron with a self-connection, a prerequisite for integrated recurrent neural networks (RNNs). After studying two applications, we propose a photonics-assisted platform for time series prediction and classification.

Channel-Recurrent Autoencoding for Image Modeling

Despite recent successes in synthesizing faces and bedrooms, existing generative models struggle to capture more complex image types (Figure 1), potentially due to the oversimplification of their latent space constructions. To tackle this issue, building on Variational Autoencoders (VAEs), we integrate recurrent connections across channels to both inference and generation steps, allowing the high-level features to be captured in global-to-local, coarse-to-fine manners. Combined with adversarial loss, our channel-recurrent VAE-GAN (crVAE-GAN) outperforms VAE-GAN in generating a diverse spectrum of high resolution images while maintaining the same level of computational efficacy. Our model produces interpretable and expressive latent representations to benefit downstream tasks such as image completion. Moreover, we propose two novel regularizations, namely the KL objective weighting scheme over time steps and mutual information maximization between transformed latent variables and the outputs, to enhance the training.