Few-Shot Learning is a machine learning scenario where a model is trained to make accurate predictions with very limited examples or “shots” of each class or category. It’s useful for tasks where only a small amount of labeled data is available.

Posts

Hierarchical Gaussian Mixture based Task Generative Model for Robust Meta-Learning

Meta-learning enables quick adaptation of machine learning models to new tasks with limited data. While tasks could come from varying distributions in reality, most of the existing meta-learning methods consider both training and testing tasks as from the same uni-component distribution, overlooking two critical needs of a practical solution: (1) the various sources of tasks may compose a multi-component mixture distribution, and (2) novel tasks may come from a distribution that is unseen during meta-training. In this paper, we demonstrate these two challenges can be solved jointly by modeling the density of task instances. We develop a meta training framework underlain by a novel Hierarchical Gaussian Mixture based Task Generative Model (HTGM). HTGM extends the widely used empirical process of sampling tasks to a theoretical model, which learns task embeddings, fits the mixture distribution of tasks, and enables density-based scoring of novel tasks. The framework is agnostic to the encoder and scales well with large backbone networks. The model parameters are learned end-to-end by maximum likelihood estimation via an Expectation-Maximization (EM) algorithm. Extensive experiments on benchmark datasets indicate the effectiveness of our method for both sample classification and novel task detection.

Few-Shot Video Classification via Representation Fusion and Promotion Learning

Recent few-shot video classification (FSVC) works achieve promising performance by capturing similarity across support and query samples with different temporal alignment strategies or learning discriminative features via Transformer block within each episode. However, they ignore two important issues: a) It is difficult to capture rich intrinsic action semantics from a limited number of support instances within each task. b) Redundant or irrelevant frames in videos easily weaken the positive influence of discriminative frames. To address these two issues, this paper proposes a novel Representation Fusion and Promotion Learning (RFPL) mechanism with two sub-modules: meta-action learning (MAL) and reinforced image representation (RIR). Concretely, during training stage, we perform online learning for seeking a task-shared meta-action bank to enrich task-specific action representation by injecting global knowledge. Besides, we exploit reinforcement learning to obtain the importance of each frame and refine the representation. This operation maximizes the contribution of discriminative frames to further capture the similarity of support and query samples from the same category. Our RFPL framework is highly flexible that it can be integrated with many existing FSVC methods. Extensive experiments show that RFPL significantly enhances the performance of existing FSVC models when integrated with them.

MSI: Maximize Support-Set Information for Few-Shot Segmentation

MSI: Maximize Support-Set Information for Few-Shot Segmentation FSS (Few-shot segmentation) aims to segment a target class using a small number of labeled images (support set). To extract information relevant to the target class, a dominant approach in best performing FSS methods removes background features using a support mask. We observe that this feature excision through a limiting support mask introduces an information bottleneck in several challenging FSS cases, e.g., for small targets and/or inaccurate target boundaries. To this end, we present a novel method (MSI), which maximizes the support-set information by exploiting two complementary sources of features to generate super correlation maps. We validate the effectiveness of our approach by instantiating it into three recent and strong FSS methods. Experimental results on several publicly available FSS benchmarks show that our proposed method consistently improves performance by visible margins and leads to faster convergence.

Cosine Similarity based Few-Shot Video Classifier with Attention-based Aggregation

Cosine Similarity based Few-Shot Video Classifier with Attention-based Aggregation Meta learning algorithms for few-shot video recognition use complex, episodic training but they often fail to learn effective feature representations. In contrast, we propose a new and simpler few-shot video recognition method that does not use meta-learning, but its performance compares well with the best meta-learning proposals. Our new few-shot video classification pipeline consists of two distinct phases. In the pre-training phase, we learn a good video feature extraction network that generates a feature vector for each video. After a sparse sampling strategy selects frames from the video, we generate a video feature vector from the sampled frames. Our proposed video feature extractor network, which consists of an image feature extraction network followed by a new transformer encoder, is trained end-to-end by including a classifier head that uses cosine similarity layer instead of the traditional linear layer to classify a corpus of labeled video examples. Unlike prior work in meta learning, we do not use episodic training to learn the image feature vector. Also, unlike prior work that averages frame-level feature vectors into a single video feature vector, we combine individual frame-level feature vectors by using a new Transformer encoder that explicitly captures the key, temporal properties in the sequence of sampled frames. End-to-end training of the video feature extractor ensures that the proposed Transformer encoder captures important temporal properties in the video, while the cosine similarity layer explicitly reduces the intra-class variance of videos that belong to the same class. Next, in the few-shot adaptation phase, we use the learned video feature extractor to train a new video classifier by using the few available examples from novel classes. Results on SSV2-100 and Kinetics-100 benchmarks show that our proposed few-shot video classifier outperforms the meta-learning-based methods and achieves the best state-of-the-art accuracy. We also show that our method can easily discern between actions and their inverse (for example, picking something up vs. putting something down), while prior art, which averages image feature vectors, is unable to do so.

On Novel Object Recognition: A Unified Framework for Discriminability and Adaptability

On Novel Object Recognition: A Unified Framework for Discriminability and Adaptability The rich and accessible labeled data fueled the revolutionary successes of deep learning in object recognition. However, recognizing objects of novel classes with limited supervision information provided, i.e., Novel Object Recognition (NOR), remains a challenging task. We identify in this paper two key factors for the success of NOR that previous approaches fail to simultaneously guarantee. The first is producing discriminative feature representations for images of novel classes, and the second is generating a flexible classifier readily adapted to novel classes provided with limited supervision signals. To secure both key factors, we propose a framework which decouples a deep classification model into a feature extraction module and a classification module. We learn the former to ensure feature discriminability with a standard multi-class classification task by fully utilizing the competing information among all classes within a training set, and learn the latter to secure adaptability by training a meta-learner network which generates classifier weights whenever provided with minimal supervision information of target classes. Extensive experiments on common benchmark datasets in the settings of both zero-shot and few-shot learning demonstrate our method achieves state-of-the-art performance.

Rethinking Zero-Shot Learning: A Conditional Visual Classification Perspective

Rethinking Zero-Shot Learning: A Conditional Visual Classification Perspective Zero-shot learning (ZSL) aims to recognize instances of unseen classes solely based on the semantic descriptions of the classes. Existing algorithms usually formulate it as a semantic-visual correspondence problem, by learning mappings from one feature space to the other. Despite being reasonable, previous approaches essentially discard the highly precious discriminative power of visual features in an implicit way, and thus produce undesirable results. We instead reformulate ZSL as a conditioned visual classification problem, i.e., classifying visual features based on the classifiers learned from the semantic descriptions. With this reformulation, we develop algorithms targeting various ZSL settings: For the conventional setting, we propose to train a deep neural network that directly generates visual feature classifiers from the semantic attributes with an episode-based training scheme; For the generalized setting, we concatenate the learned highly discriminative classifiers for seen classes and the generated classifiers for unseen classes to classify visual features of all classes; For the transductive setting, we exploit unlabeled data to effectively calibrate the classifier generator using a novel learning-without-forgetting self-training mechanism and guide the process by a robust generalized cross-entropy loss. Extensive experiments show that our proposed algorithms significantly outperform state-of-the-art methods by large margins on most benchmark datasets in all the ZSL settings.