Follow-Up refers to additional questions or inquiries that are posed in response to a previous question or set of answers. These additional questions aim to delve deeper into a specific aspect of the topic, seek clarification, or explore related details. Follow-up questions contribute to a more in-depth exploration of the subject matter and help foster a clearer and more comprehensive understanding of the topics being discussed.

Posts

Team Papelo at FEVEROUS: Multi-hop Evidence Pursuit

Team Papelo at FEVEROUS: Multi-hop Evidence Pursuit We develop a system for the FEVEROUS fact extraction and verification task that ranks an initial set of potential evidence and then pursues missing evidence in subsequent hops by trying to generate it, with a “next hop prediction module” whose output is matched against page elements in a predicted article. Seeking evidence with the next hop prediction module continues to improve FEVEROUS score for up to seven hops. Label classification is trained on possibly incomplete extracted evidence chains, utilizing hints that facilitate numerical comparison. The system achieves .281 FEVEROUS score and .658 label accuracy on the development set, and finishes in second place with .259 FEVEROUS score and .576 label accuracy on the test set.

Generating Followup Questions for Interpretable Multi hop Question Answering

Generating Followup Questions for Interpretable Multi hop Question Answering We propose a framework for answering open domain multi hop questions in which partial information is read and used to generate followup questions, to finally be answered by a pretrained single hop answer extractor. This framework makes each hop interpretable, and makes the retrieval associated with later hops as flexible and specific as for the first hop. As a first instantiation of this framework, we train a pointer generator network to predict followup questions based on the question and partial information. This provides a novel application of a neural question generation network, which is applied to give weak ground truth single hop followup questions based on the final answers and their supporting facts. Learning to generate followup questions that select the relevant answer spans against downstream supporting facts, while avoiding distracting premises, poses an exciting semantic challenge for text generation. We present an evaluation using the two hop bridge questions of HotpotQA