Generative Adversarial Networks (GANs) are a class of machine learning models consisting of a generator and a discriminator. The generator aims to create realistic data, while the discriminator tries to distinguish between real and generated data. This adversarial process results in the generation of realistic synthetic data.

Posts

Convolutional Transformer based Dual Discriminator Generative Adversarial Networks for Video Anomaly Detection

Detecting abnormal activities in real-world surveillance videos is an important yet challenging task as the prior knowledge about video anomalies is usually limited or unavailable. Despite that many approaches have been developed to resolve this problem, few of them can capture the normal spatio-temporal patterns effectively and efficiently. Moreover, existing works seldom explicitly consider the local consistency at frame level and global coherence of temporal dynamics in video sequences. To this end, we propose Convolutional Transformer based Dual Discriminator Generative Adversarial Networks (CT-D2GAN) to perform unsupervised video anomaly detection. Specifically, we first present a convolutional transformer to perform future frame prediction. It contains three key components, i.e., a convolutional encoder to capture the spatial information of the input video clips, a temporal self-attention module to encode the temporal dynamics, and a convolutional decoder to integrate spatio-temporal features and predict the future frame. Next, a dual discriminator based adversarial training procedure, which jointly considers an image discriminator that can maintain the local consistency at frame-level and a video discriminator that can enforce the global coherence of temporal dynamics, is employed to enhance the future frame prediction. Finally, the prediction error is used to identify abnormal video frames. Thoroughly empirical studies on three public video anomaly detection datasets, i.e., UCSD Ped2, CUHK Avenue, and Shanghai Tech Campus, demonstrate the effectiveness of the proposed adversarial spatio-temporal modeling framework.

Adversarial Cooperative Imitation Learning for Dynamic Treatment Regimes

Recent developments in discovering dynamic treatment regimes (DTRs) have heightened the importance of deep reinforcement learning (DRL) which are used to recover the doctor’s treatment policies. However, existing DRL-based methods expose the following limitations: 1) supervised methods based on behavior cloning suffer from compounding errors, 2) the self-defined reward signals in reinforcement learning models are either too sparse or need clinical guidance, 3) only positive trajectories (e.g. survived patients) are considered in current imitation learning models, with negative trajectories (e.g. deceased patients) been largely ignored, which are examples of what not to do and could help the learned policy avoid repeating mistakes. To address these limitations, in this paper, we propose the adversarial cooperative imitation learning model, ACIL, to deduce the optimal dynamic treatment regimes that mimics the positive trajectories while differs from the negative trajectories. Specifically, two discriminators are used to help achieve this goal: an adversarial discriminator is designed to minimize the discrepancies between the trajectories generated from the policy and the positive trajectories, and a cooperative discriminator is used to distinguish the negative trajectories from the positive and generated trajectories. The reward signals from the discriminators are utilized to refine the policy for dynamic treatment regimes. Experiments on the publicly real-world medical data demonstrate that ACIL improves the likelihood of patient survival and provides better dynamic treatment regimes with the exploitation of information from both positive and negative trajectories.

Self-Attentive Attributed Network Embedding Through Adversarial Learning

Network embedding aims to learn the low-dimensional representations/embeddings of vertices which preserve the structure and inherent properties of the networks. The resultant embeddings are beneficial to downstream tasks such as vertex classification and link prediction. A vast majority of real-world networks are coupled with a rich set of vertex attributes, which could be potentially complementary in learning better embeddings. Existing attributed network embedding models, with shallow or deep architectures, typically seek to match the representations in topology space and attribute space for each individual vertex by assuming that the samples from the two spaces are drawn uniformly. The assumption, however, can hardly be guaranteed in practice. Due to the intrinsic sparsity of sampled vertex sequences and incompleteness in vertex attributes, the discrepancy between the attribute space and the network topology space inevitably exists. Furthermore, the interactions among vertex attributes, a.k.a cross features, have been largely ignored by existing approaches. To address the above issues, in this paper, we propose Nettention, a self-attentive network embedding approach that can efficiently learn vertex embeddings on attributed network. Instead of sample-wise optimization, Nettention aggregates the two types of information through minimizing the difference between the representation distributions in the low-dimensional topology and attribute spaces. The joint inference is encapsulated in a generative adversarial training process, yielding better generalization performance and robustness. The learned distributions consider both locality-preserving and global reconstruction constraints which can be inferred from the learning of the adversarially regularized autoencoders. Additionally, a multi-head self-attention module is developed to explicitly model the attribute interactions. Extensive experiments on benchmark datasets have verified the effectiveness of the proposed Nettention model on a variety of tasks, including vertex classification and link prediction.

Learning Deep Network Representations with Adversarially Regularized Autoencoders

The problem of network representation learning, also known as network embedding, arises in many machine learning tasks assuming that there exist a small number of variabilities in the vertex representations which can capture the “semantics” of the original network structure. Most existing network embedding models, with shallow or deep architectures, learn vertex representations from the sampled vertex sequences such that the low-dimensional embeddings preserve the locality property and/or global reconstruction capability. The resultant representations, however, are difficult for model generalization due to the intrinsic sparsity of sampled sequences from the input network. As such, an ideal approach to address the problem is to generate vertex representations by learning a probability density function over the sampled sequences. However, in many cases, such a distribution in a low-dimensional manifold may not always have an analytic form. In this study, we propose to learn the network representations with adversarially regularized autoencoders (NetRA). NetRA learns smoothly regularized vertex representations that well capture the network structure through jointly considering both locality-preserving and global reconstruction constraints. The joint inference is encapsulated in a generative adversarial training process to circumvent the requirement of an explicit prior distribution, and thus obtains better generalization performance. We demonstrate empirically how well key properties of the network structure are captured and the effectiveness of NetRA on a variety of tasks, including network reconstruction, link prediction, and multi-label classification.