Giovanni Milione NEC Labs America

Giovanni Milione

Senior Researcher

Optical Networking & Sensing

Posts

Underwater Acoustic OFDM Transmission over Optical Fiber with Distributed Acoustic Sensing

We demonstrate fiber-optic acoustic data transmission using distributed acoustic sensing technology in an underwater environment. An acoustic orthogonal frequencydivisionmultiplexing (OFDM) signal transmitted through a fiber-optic cable deployed in a standard 40-meter-scale underwater testbed.

1.2 Tb/s/l Real Time Mode Division Multiplexing Free Space Optical Communication with Commercial 400G Open and Disaggregated Transponders

We experimentally demonstrate real time mode division multiplexing free space optical communication with commercial 400G open and disaggregated transponders. As proof of concept,using HG00, HG10, and HG01 modes, we transmit 1.2 Tb/s/l (3´1l´400Gb/s) error free.

NEC Labs America Attends OFC 2025 in San Francisco

The NEC Labs America Optical Networking and Sensing team is attending the 2025 Optical Fiber Communications Conference and Exhibition (OFC), the premier global event for optical networking and communications. Bringing together over 13,500 attendees from 83+ countries, more than 670 exhibitors, and hundreds of sessions featuring industry leaders, OFC 2025 serves as the central hub for innovation and collaboration in the field. At this year’s conference, NEC Labs America will showcase its cutting-edge research and advancements through multiple presentations, demonstrations, and workshops.

Free-Space Optical Sensing Using Vector Beam Spectra

Vector beams are spatial modes that have spatially inhomogeneous states of polarization. Any light beam is a linear combination of vector beams, the coefficients of which comprise a vector beam “spectrum.” In this work, through numerical calculations, a novel method of free-space optical sensing is demonstrated using vector beam spectra, which are shown to be experimentally measurable via Stokes polarimetry. As proof of concept, vector beam spectra are numerically calculated for various beams and beam obstructions.

400-Gb/s mode division multiplexing-based bidirectional free space optical communication in real-time with commercial transponders

In this work, for the first time, we experimentally demonstrate mode division multiplexing-based bidirectional free space optical communication in real-time using commercial transponders. As proof of concept, via bidirectional pairs of Hermite-Gaussian modes (HG00, HG10, and HG01), using a Telecom Infra Project Phoenix compliant commercial 400G transponder, 400-Gb/s data signals (56-Gbaud, DP-16QAM) are bidirectionally transmitted error free, i.e., with less than 1e-2 pre-FEC BERs, over approximately 1-m of free space

Optical orbital angular momentum analogy to the Stern-Gerlach experiment

Symmetry breaking has been shown to reveal interesting phenomena in physical systems. A notable example is the fundamental work of Otto Stern and Walther Gerlach [Stern and Zerlach, Z. Physik 9, 349 (1922)] nearly 100 years ago demonstrating a spin angular momentum (SAM) deflection that differed from classical theory. Here we use non-separable states of SAM and orbital angular momentum (OAM), known as vector vortex modes, to demonstrate how a classical optics analogy can be used to reveal this nonseparability, reminiscent of the work carried out by Sternand Gerlach. We show that by implementing a polarization insensitive device to measure the OAM, the SAM states can be deflected to spatially resolved positions.

Accelerating Distributed Machine Learning with an Efficient AllReduce Routing Strategy

We propose an efficient routing strategy for AllReduce transfers, which compromise of the dominant traffic in machine learning-centric datacenters, to achieve fast parameter synchronization in distributed machine learning, improving the average training time by 9%.

Distributed Fiber-Optic Sensor as an Acoustic Communication Receiver Array

A novel acoustic transmission technique using distributed acoustic sensors is introduced. By choosing better incident angles for smaller fading and employing an 8- channel beamformer, over 10KB data is transmitted at a 6.4kbps data rate.

OFDM Signal Transmission Using Distributed Fiber-Optic Acoustic Sensing

Acoustic data transmission with the Orthogonal Frequency Division Multiplexing (OFDM) signal has been demonstrated using a Distributed Acoustic Sensor (DAS) based on Phase-sensitive Optical Time-Domain Reflectometry (?-OTDR).

Distributed Optical Fiber Sensing Using Specialty Optical Fibers

Distributed fiber optic sensing systems use long section of optical fiber as the sensing media. Therefore, the fiber characteristics determines the sensing capability and performance. In this presentation, various types of specialty optical fibers and their sensing applications will be introduced and discussed.