Posts

InfoGCL: Information-Aware Graph Contrastive Learning

InfoGCL: Information-Aware Graph Contrastive Learning Various graph contrastive learning models have been proposed to improve the performance of tasks on graph datasets in recent years. While effective and prevalent, these models are usually carefully customized. In particular, despite all recent work create two contrastive views, they differ in a variety of view augmentations, architectures, and objectives. It remains an open question how to build your graph contrastive learning model from scratch for particular graph tasks and datasets. In this work, we aim to fill this gap by studying how graph information is transformed and transferred during the contrastive learning process, and proposing an information-aware graph contrastive learning framework called InfoGCL. The key to the success of the proposed framework is to follow the Information Bottleneck principle to reduce the mutual information between contrastive parts while keeping task-relevant information intact at both the levels of the individual module and the entire framework so that the information loss during graph representation learning can be minimized. We show for the first time that all recent graph contrastive learning methods can be unified by our framework. Based on theoretical and empirical analysis on benchmark graph datasets, we show that InfoGCL achieves state-of-the-art performance in the settings of both graph classification and node classification tasks.

Parameterized Explainer for Graph Neural Network

Parameterized Explainer for Graph Neural Network Despite recent progress in Graph Neural Networks (GNNs), explaining predictions made by GNNs remains a challenging open problem. The leading method independently addresses the local explanations (i.e., important subgraph structure and node features) to interpret why a GNN model makes the prediction for a single instance, e.g. a node or a graph. As a result, the explanation generated is painstakingly customized for each instance. The unique explanation interpreting each instance independently is not sufficient to provide a global understanding of the learned GNN model, leading to the lack of generalizability and hindering it from being used in the inductive setting. Besides, as it is designed for explaining a single instance, it is challenging to explain a set of instances naturally (e.g., graphs of a given class). In this study, we address these key challenges and propose PGExplainer, a parameterized explainer for GNNs. PGExplainer adopts a deep neural network to parameterize the generation process of explanations, which enables PGExplainer a natural approach to explaining multiple instances collectively. Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting easily. Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification over the leading baseline.