Posts

A Deep Generative Model for Molecule Optimization via One Fragment Modification

A Deep Generative Model for Molecule Optimization via One Fragment Modification Molecule optimization is a critical step in drug development to improve the desired properties of drug candidates through chemical modification. We have developed a novel deep generative model, Modof, over molecular graphs for molecule optimization. Modof modifies a given molecule through the prediction of a single site of disconnection at the molecule and the removal and/or addition of fragments at that site. A pipeline of multiple, identical Modof models is implemented into Modof-pipe to modify an input molecule at multiple disconnection sites. Here we show that Modof-pipe is able to retain major molecular scaffolds, allow controls over intermediate optimization steps and better constrain molecule similarities. Modof-pipe outperforms the state-of-the-art methods on benchmark datasets. Without molecular similarity constraints, Modof-pipe achieves 81.2% improvement in the octanol–water partition coefficient, penalized by synthetic accessibility and ring size, and 51.2%, 25.6% and 9.2% improvement if the optimized molecules are at least 0.2, 0.4 and 0.6 similar to those before optimization, respectively. Modof-pipe is further enhanced into Modof-pipem to allow modification of one molecule to multiple optimized ones. Modof-pipem achieves additional performance improvement, at least 17.8% better than Modof-pipe.

Structural Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs

Structural Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs Detecting anomalies in dynamic graphs is a vital task, with numerous practical applications in areas such as security, finance, and social media. Existing network embedding based methods have mostly focused on learning good node representations, whereas largely ignoring the subgraph structural changes related to the target nodes in a given time window. In this paper, we propose StrGNN, an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs. In particular, we first extract the h-hop enclosing subgraph centered on the target edge and propose a node labeling function to identify the role of each node in the subgraph. Then, we leverage the graph convolution operation and Sortpooling layer to extract the fixed-size feature from each snapshot/timestamp. Based on the extracted features, we utilize the Gated Recurrent Units to capture the temporal information for anomaly detection. We fully implement StrGNN and deploy it into a real enterprise security system, and it greatly helps detect advanced threats and optimize the incident response. Extensive experiments on six benchmark datasets also demonstrate the effectiveness of StrGNN.

Fusing the Old with the New: Learning Relative Pose with Geometry Guided Uncertainty

Fusing the Old with the New: Learning Relative Pose with Geometry Guided Uncertainty Learning methods for relative camera pose estimation have been developed largely in isolation from classical geometric approaches. The question of how to integrate predictions from deep neural networks (DNNs) and solutions from geometric solvers, such as the 5 point algorithm, has as yet remained under explored. In this paper, we present a novel framework that involves probabilistic fusion between the two families of predictions during network training, with a view to leveraging their complementary benefits in a learnable way. The fusion is achieved by learning the DNN uncertainty under explicit guidance by the geometric uncertainty, thereby learning to take into account the geometric solution in relation to the DNN prediction. Our network features a self attention graph neural network, which drives the learning by enforcing strong interactions between different correspondences and potentially modeling complex relationships between points. We propose motion parmeterizations suitable for learning and show that our method achieves state of the art performance on the challenging DeMoN and ScanNet datasets. While we focus on relative pose, we envision that our pipeline is broadly applicable for fusing classical geometry and deep learning.