Posts

Towards Robust Graph Neural Networks via Adversarial Contrastive Learning

Towards Robust Graph Neural Networks via Adversarial Contrastive Learning Graph Neural Network (GNN), as a powerful representation learning model on graph data, attracts much attention across various disciplines. However, recent studies show that GNN is vulnerable to adversarial attacks. How to make GNN more robust? What are the key vulnerabilities in GNN? How to address the vulnerabilities and defend GNN against the adversarial attacks? Adversarial training has shown to be effective in improving the robustness of traditional Deep Neural Networks (DNNs). However, existing adversarial training works mainly focus on the image data, which consists of continuous features, while the features and structures of graph data are often discrete. Moreover, rather than assuming each sample is independent and identically distributed as in DNN, GNN leverages the contextual information across the graph (e.g., neighborhoods of a node). Thus, existing adversarial training techniques cannot be directly applied to defend GNN. In this paper, we propose ContrastNet, an effective adversarial defense framework for GNN. In particular, we propose an adversarial contrastive learning method to train the GNN over the adversarial space. To further improve the robustness of GNN, we investigate the latent vulnerabilities in every component of a GNN encoder and propose corresponding refining strategies. Extensive experiments on three public datasets demonstrate the effectiveness of ContrastNet in improving the robustness of popular GNN variants, such as Graph Convolutional Network and GraphSage, under various types of adversarial attacks.

Learning to Drop: Robust Graph Neural Network via Topological Denoising

Learning to Drop: Robust Graph Neural Network via Topological Denoising Graph Neural Networks (GNNs) have shown to be powerful tools for graph analytics. The key idea is to recursively propagate and aggregate information along the edges of the given graph. Despite their success, however, the existing GNNs are usually sensitive to the quality of the input graph. Real-world graphs are often noisy and contain task-irrelevant edges, which may lead to suboptimal generalization performance in the learned GNN models. In this paper, we propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of GNNs by learning to drop task-irrelevant edges. PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks. To take into consideration the topology of the entire graph, the nuclear norm regularization is applied to impose the low-rank constraint on the resulting sparsified graph for better generalization. PTDNet can be used as a key component in GNN models to improve their performances on various tasks, such as node classification and link prediction. Experimental studies on both synthetic and benchmark datasets show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.