Posts

PAIL: Performance based Adversarial Imitation Learning Engine for Carbon Neutral Optimization

Achieving carbon neutrality within industrial operations has become increasingly imperative for sustainable development. It is both a significant challenge and a key opportunity for operational optimization in industry 4.0. In recent years, Deep Reinforcement Learning (DRL) based methods offer promising enhancements for sequential optimization processes and can be used for reducing car-bon emissions. However, existing DRL methods need a pre-defined reward function to assess the impact of each action on the final sustainable development goals (SDG). In many real applications, such a reward function cannot be given in advance. To address the problem, this study proposes a Performance based Adversarial Imitation Learning (PAIL) engine. It is a novel method to acquire optimal operational policies for carbon neutrality without any pre-defined action rewards. Specifically, PAIL employs a Transformer-based policy generator to encode historical information and predict fol-lowing actions within a multi-dimensional space. The entire action sequence will be iteratively updated by an environmental simulator. Then PAIL uses a discriminator to minimize the discrepancy be-tween generated sequences and real-world samples of high SDG. In parallel, a Q-learning framework based performance estimator is de-signed to estimate the impact of each action on SDG. Based on these estimations, PAIL refines generated policies with the rewards from both discriminator and performance estimator. PAIL is evaluated on multiple real-world application cases and datasets. The experiment results demonstrate the effectiveness of PAIL comparing to other state-of-the-art baselines. In addition, PAIL offers meaningful interpretability for the optimization in carbon neutrality.

InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration

Though Large Language Models (LLMs) have shown remarkable open-generation capabilities across diverse domains, they struggle with knowledge-intensive tasks. To alleviate this issue, knowledge integration methods have been proposed to enhance LLMs with domain-specific knowledge graphs using external modules. However, they suffer from data inefficiency as they require both known and unknown knowledge for fine-tuning. Thus, we study a novel problem of integrating unknown knowledge into LLMs efficiently without unnecessary overlap of known knowledge. Injecting new knowledge poses the risk of forgetting previously acquired knowledge. To tackle this, we propose a novel Infuser-Guided Knowledge Integration (InfuserKI) framework that utilizes transformer internal states to determine whether to enhance the original LLM output with additional information, thereby effectively mitigating knowledge forgetting. Evaluations on the UMLS-2.5k and MetaQA domain knowledge graphs demonstrate that InfuserKI can effectively acquire new knowledge and outperform state-of-the-art baselines by 9% and 6%, respectively, in reducing knowledge forgetting.

POND: Multi-Source Time Series Domain Adaptation with Information-Aware Prompt Tuning

Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications, including but not limited to human activity recognition, sleep stage classification, and machine fault diagnosis. Despite the numerous domain adaptation techniques proposed to tackle this complex problem, they primarily focus on domain adaptation from a single source domain. Yet, it is more crucial to investigate domain adaptation from multiple domains due to the potential for greater improvements. To address this, three important challenges need to be overcome: 1). The lack of exploration to utilize domain-specific information for domain adaptation, 2). The difficulty to learn domain-specific information that changes over time, and 3). The difficulty to evaluate learned domain-specific information. In order to tackle these challenges simultaneously, in this paper, we introduce PrOmpt-based domaiN Discrimination (POND), the first framework to utilize prompts for time series domain adaptation. Specifically, to address Challenge 1, we extend the idea of prompt tuning to time series analysis and learn prompts to capture common and domain-specific information from all source domains. To handle Challenge 2, we introduce a conditional module for each source domain to generate prompts from time series input data. For Challenge 3, we propose two criteria to select good prompts, which are used to choose the most suitable source domain for domain adaptation. The efficacy and robustness of our proposed POND model are extensively validated through experiments across 50 scenarios encompassing four datasets. Experimental results demonstrate that our proposed POND model outperforms all state-of-the-art comparison methods by up to 66% on the F1-score.

Distantly-Supervised Joint Extraction with Noise-Robust Learning

Joint entity and relation extraction is a process that identifies entity pairs and their relations using a single model. We focus on the problem of joint extraction in distantly-labeled data,whose labels are generated by aligning entity mentions with the corresponding entity and relation tags using a knowledge base (KB). One key challenge is the presence of noisy labels arising from both incorrect entity and relation annotations, which significantly impairs the quality of supervised learning. Existing approaches, either considering only one source of noise or making decisions using external knowledge, cannot well-utilize significant information in the training data. We propose DENRL, a generalizable framework that 1) incorporates a lightweight transformer backbone into a sequence labeling scheme for joint tagging, and 2) employs a noise-robust framework that regularizes the tagging model with significant relation patterns and entity-relation dependencies, then iteratively self-adapts to instances with less noise from both sources. Surprisingly, experiments1 on two benchmark datasets show that DENRL, using merely its own parametric distribution and simple data-driven heuristics, outperforms large language model-based baselines by a large margin with better interpretability.

Towards Counterfactual Fairness-aware Domain Generalization in Changing Environments

Recognizing domain generalization as a commonplace challenge in machine learning, data distribution might progressively evolve across a continuum of sequential domains in practical scenarios. While current methodologies primarily concentrate on bolstering model effectiveness within these new domains, they tend to neglect issues of fairness throughout the learning process. In response, we propose an innovative framework known as Disentanglement for Counterfactual Fairness-aware Domain Generalization (DCFDG). This approach adeptly removes domain-specific information and sensitive information from the embedded representation of classification features. To scrutinize the intricate interplay between semantic information, domain-specific information, and sensitive attributes, we systematically partition the exogenous factors into four latent variables. By incorporating fairness regularization, we utilize semantic information exclusively for classification purposes. Empirical validation on synthetic and authentic datasets substantiates the efficacy of our approach, demonstrating elevated accuracy levels while ensuring the preservation of fairness amidst the evolving landscape of continuous domains.

DFA-RAG: Conversational Semantic Router for Large Language Model with Definite Finite Automaton

This paper introduces the retrieval-augmented large language model with Definite Finite Automaton (DFA-RAG), a novel framework designed to enhance the capabilities of conversational agents using large language models (LLMs). Traditional LLMs face challenges in generating regulated and compliant responses in special scenarios with predetermined response guidelines, like emotional support and customer service. Our framework addresses these challenges by embedding a Definite Finite Automaton (DFA), learned from training dialogues, within the LLM. This structured approach acts as a semantic router which enables the LLM to adhere to a deterministic response pathway. The routing is achieved by the retrieval-augmentation generation (RAG) strategy, which carefully selects dialogue examples aligned with the current conversational context. The advantages of DFA-RAG include an interpretable structure through human-readable DFA, context-aware retrieval for responses in conversations, and plug-and-play compatibility with existing LLMs. Extensive benchmarks validate DFA-RAG’s effectiveness, indicating its potential as a valuable contribution to the conversational agent.

RIO-CPD: A Riemannian Geometric Method for Correlation-aware Online Change Point Detection

The objective of change point detection is to identify abrupt changes at potentially multiple points within a data sequence. This task is particularly challenging in the online setting where various types of changes can occur, including shifts in both the marginal and joint distributions of the data. This paper tackles these challenges by sequentially tracking correlation matrices on their Riemannian geometry, where the geodesic distances accurately capture the development of correlations. We propose Rio-CPD, a non-parametric correlation-aware online change point detection framework that combines the Riemannian geometry of the manifold of symmetric positive definite matrices and the cumulative sum statistic (CUSUM) for detecting change points. Rio-CPD enhances CUSUM by computing the geodesic distance from present observations to the Frechet mean of previous observations. With careful choice of metrics equipped to the Riemannian geometry, Rio-CPD is simple and computationally efficient. Experimental results on both synthetic and real-world datasets demonstrate that Rio-CPD outperforms existing methods in detection accuracy and efficiency.

Knowledge-enhanced Prompt Learning for Open-domain Commonsense Reasoning

Neural language models for commonsense reasoning often formulate the problem as a QA task and make predictions based on learned representations of language after fine-tuning. However, without providing any fine-tuning data and pre-defined answer candidates, can neural language models still answer commonsense reasoning questions only relying on external knowledge? In this work, we investigate a unique yet challenging problem-open-domain commonsense reasoning that aims to answer questions without providing any answer candidates and fine-tuning examples. A team comprising NECLA (NEC Laboratories America) and NEC Digital Business Platform Unit proposed method leverages neural language models to iteratively retrieve reasoning chains on the external knowledge base, which does not require task-specific supervision. The reasoning chains can help to identify the most precise answer to the commonsense question and its corresponding knowledge statements to justify the answer choice. This technology has proven its effectiveness in a diverse array of business domains.

Pruning as a Domain-specific LLM Extractor

Large Language Models (LLMs) have exhibited remarkable proficiency across a wide array of NLP tasks. However, the escalation in model size also engenders substantial deployment costs. While few efforts have explored model pruning techniques to reduce the size of LLMs, they mainly center on general or task-specific weights. This leads to suboptimal performance due to lacking specificity on the target domain or generality on different tasks when applied to domain-specific challenges. This work introduces an innovative unstructured dual-pruning methodology, D-PRUNER, for domain-specific compression on LLM. It extracts a compressed, domain-specific, and task agnostic LLM by identifying LLM weights that are pivotal for general capabilities, like linguistic capability and multi-task solving, and domain-specific knowledge. More specifically, we first assess general weight importance by quantifying the error incurred upon their removal with the help of an open-domain calibration dataset. Then, we utilize this general weight importance to refine the training loss, so that it preserves generality when fitting into a specific domain. Moreover, by efficiently approximating weight importance with the refined training loss on a domain-specific calibration dataset, we obtain a pruned model emphasizing generality and specificity. Our comprehensive experiments across various tasks in healthcare and legal domains show the effectiveness of D-PRUNER in domain-specific compression. Our code is available at https: //github.com/psunlpgroup/D-Pruner.

Uncertainty Quantification for In-Context Learning of Large Language Models

In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs) and revolutionized various fields by providing a few task-relevant demonstrations in the prompt. However, trustworthy issues with LLM’s response, such as hallucination, have also been actively discussed. Existing works have been devoted to quantifying the uncertainty in LLM’s response, but they often overlook the complex nature of LLMs and the uniqueness of in-context learning. In this work, we delve into the predictive uncertainty of LLMs associated with in-context learning, highlighting that such uncertainties may stem from both the provided demonstrations (aleatoric uncertainty) and ambiguities tied to the model’s configurations (epistemic uncertainty). We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties. The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion. Extensive experiments are conducted to demonstrate the effectiveness of the decomposition. The code and data are available at: https://github.com/lingchen0331/UQ_ICL.