Hui Xiong works at Rutgers University.

Posts

Multi-Faceted Knowledge-Driven Pre-training for Product Representation Learning

Multi-Faceted Knowledge-Driven Pre-training for Product Representation Learning As a key component of e-commerce computing, product representation learning (PRL) provides benefits for a variety of applications, including product matching, search, and categorization. The existing PRL approaches have poor language understanding ability due to their inability to capture contextualized semantics. In addition, the learned representations by existing methods are not easily transferable to new products. Inspired by the recent advance of pre-trained language models (PLMs), we make the attempt to adapt PLMs for PRL to mitigate the above issues. In this article, we develop KINDLE, a Knowledge-drIven pre-trainiNg framework for proDuct representation LEarning, which can preserve the contextual semantics and multi-faceted product knowledge robustly and flexibly. Specifically, we first extend traditional one-stage pre-training to a two-stage pre-training framework and exploit a deliberate knowledge encoder to ensure a smooth knowledge fusion into PLM. In addition, we propose a multi-objective heterogeneous embedding method to represent thousands of knowledge elements. This helps KINDLE calibrate knowledge noise and sparsity automatically by replacing isolated classes as training targets in knowledge acquisition tasks. Furthermore, an input-aware gating network is proposed to select the most relevant knowledge for different downstream tasks. Finally, extensive experiments have demonstrated the advantages of KINDLE over the state-of-the-art baselines across three downstream tasks.

CAT: Beyond Efficient Transformer for Content-Aware Anomaly Detection in Event Sequences

CAT: Beyond Efficient Transformer for Content-Aware Anomaly Detection in Event Sequences It is critical and important to detect anomalies in event sequences, which becomes widely available in many application domains. Indeed, various efforts have been made to capture abnormal patterns from event sequences through sequential pattern analysis or event representation learning. However, existing approaches usually ignore the semantic information of event content. To this end, in this paper, we propose a self-attentive encoder-decoder transformer framework, Content-Aware Transformer CAT, for anomaly detection in event sequences. In CAT, the encoder learns preamble event sequence representations with content awareness, and the decoder embeds sequences under detection into a latent space, where anomalies are distinguishable. Specifically, the event content is first fed to a content-awareness layer, generating representations of each event. The encoder accepts preamble event representation sequence, generating feature maps. In the decoder, an additional token is added at the beginning of the sequence under detection, denoting the sequence status. A one-class objective together with sequence reconstruction loss is collectively applied to train our framework under the label efficiency scheme. Furthermore, CAT is optimized under a scalable and efficient setting. Finally, extensive experiments on three real-world datasets demonstrate the superiority of CAT.

Domain oriented Language Modeling with Adaptive Hybrid Masking and Optimal Transport Alignment

Domain oriented Language Modeling with Adaptive Hybrid Masking and Optimal Transport Alignment Motivated by the success of pre-trained language models such as BERT in a broad range of natural language processing (NLP) tasks, recent research efforts have been made for adapting these models for different application domains. Along this line, existing domain-oriented models have primarily followed the vanilla BERT architecture and have a straightforward use of the domain corpus. However, domain-oriented tasks usually require accurate understanding of domain phrases, and such fine-grained phrase-level knowledge is hard to be captured by existing pre-training scheme. Also, the word co-occurrences guided semantic learning of pre-training models can be largely augmented by entity-level association knowledge. But meanwhile, there is a risk of introducing noise due to the lack of ground truth word-level alignment. To address the issues, we provide a generalized domain-oriented approach, which leverages auxiliary domain knowledge to improve the existing pre-training framework from two aspects. First, to preserve phrase knowledge effectively, we build a domain phrase pool as auxiliary knowledge, meanwhile we introduce Adaptive Hybrid Masked Model to incorporate such knowledge. It integrates two learning modes, word learning and phrase learning, and allows them to switch between each other. Second, we introduce Cross Entity Alignment to leverage entity association as weak supervision to augment the semantic learning of pre-trained models. To alleviate the potential noise in this process, we introduce an interpretable Optimal Transport based approach to guide alignment learning. Experiments on four domain-oriented tasks demonstrate the superiority of our framework.

T2-Net: A Semi-supervised Deep Model for Turbulence Forecasting

T2-Net: A Semi-supervised Deep Model for Turbulence Forecasting Accurate air turbulence forecasting can help airlines avoid hazardous turbulence, guide the routes that keep passengers safe, maximize efficiency, and reduce costs. Traditional turbulence forecasting approaches heavily rely on painstakingly customized turbulence indexes, which are less effective in dynamic and complex weather conditions. The recent availability of high-resolution weather data and turbulence records allows more accurate forecasting of the turbulence in a data-driven way. However, it is a non-trivial task for developing a machine learning based turbulence forecasting system due to two challenges: (1) Complex spatio-temporal correlations, turbulence is caused by air movement with complex spatio-temporal patterns, (2) Label scarcity, very limited turbulence labels can be obtained. To this end, in this paper, we develop a unified semi-supervised framework, T2-Net, to address the above challenges. Specifically, we first build an encoder-decoder paradigm based on the convolutional LSTM to model the spatio-temporal correlations. Then, to tackle the label scarcity problem, we propose a novel Dual Label Guessing method to take advantage of massive unlabeled turbulence data. It integrates complementary signals from the main Turbulence Forecasting task and the auxiliary Turbulence Detection task to generate pseudo-labels, which are dynamically utilized as additional training data. Finally, extensive experimental results on a real-world turbulence dataset validate the superiority of our method on turbulence forecasting.