Image Generation involves creating new images using computational models. This can include generative models such as Generative Adversarial Networks (GANs) that learn to produce realistic images.


Improving Language-Based Object Detection by Explicit Generation of Negative Examples

The recent progress in language-based object detection with an open-vocabulary can be largely attributed to finding better ways of leveraging large-scale data with free-form text annotations. Training from image captions with grounded bounding boxes (ground truth or pseudo-labeled) enable the models to reason over an open-vocabulary and understand object descriptions in free-form text. In this work, we investigate the role of negative captions for training such language-based object detectors. While the fixed label space in standard object detection datasets clearly defines the set of negative classes, the free-form text used for language-based detection makes the space of potential negatives virtually infinite in size. We propose to leverage external knowledge bases and large-language-models to automatically generate contradictions for each caption in the training dataset. Furthermore, we leverage image-generate tools to create corresponding negative images to the contradicting caption. Such automatically generated data constitute hard negative examples for language-based detection and improve the model when trained from. Our experiments demonstrate the benefits of the automatically generated training data on two complex benchmarks.

AE-StyleGAN: Improved Training of Style-Based Auto-Encoders

StyleGANs have shown impressive results on data generation and manipulation in recent years, thanks to its disentangled style latent space. A lot of efforts have been made in inverting a pretrained generator, where an encoder is trained ad hoc after the generator is trained in a two-stage fashion. In this paper, we focus on style-based generators asking a scientific question: Does forcing such a generator to reconstruct real data lead to more disentangled latent space and make the inversion process from image to latent space easy? We describe a new methodology to train a style-based autoencoder where the encoder and generator are optimized end-to-end. We show that our proposed model consistently outperforms baselines in terms of image inversion and generation quality. Supplementary, code, and pretrained models are available on the project website.