
Our Integrated Systems department innovates, designs, and prototypes high-performance intelligent distributed systems, applications, and services on complex, large-scale communication networks like 5G and beyond. We develop next-generation wireless technologies for sensing the world, localizing critical assets, and improving the capacity, coverage, and scalability of communication networks like 5G and beyond.
New application needs have always sparked human innovation. A decade ago, cloud computing enabled high-value enterprise services with a global reach and scale but with several minutes or seconds of delay. Large-scale services like enterprise resource planning (ERP) were a corner-case scenario, often designed as one-off systems. Today, applications like social networks, automated trading, and video streaming have made large-scale services the norm rather than the exception. In the future, advances in 5G networks and an explosion in smart devices, microservices, databases, networking, and computing tiers will make services so complex that humans cannot tune or manage them.
The sheer scale, dynamic nature, and concurrency in services on 5G slices will require them to be intelligent and autonomic. They will need to continuously self-assess, learn, and automatically adjust for resource needs, data quality, and service reliability. The need for increased efficiency and reduced latency between measurement and action drives our design of real-time distributed systems for feature extraction, computation, and machine learning on multimodal streaming data. We are conducting extensive research on creating end-to-end solutions using multimodal sensing technologies in the retail, public safety, and transportation domains.
Our 5G cellular network research encompasses the development of technologies on the Radio Access Network (RAN), the mobile edge, and the 5G LAN. Within the RAN, we are developing technologies that optimize massive MIMO/MU-MIMO deployments and millimeter-wave access (e.g., transmission at 28 GHz to nomadic/mobile users). At the mobile edge (MEC), we focus on virtualization, scalability, and cloud deployment of appropriate services. Our 5G LAN research extends the benefits of 5G slicing technology to enterprise LANs to position the enterprise as the new MEC.
Read our news and publications from our world-class team of researchers from our Integrated Systems department.
Access to high-quality data is an important barrier in the digital analysis of urban settings, including applications within computer vision and urban design. Diverse forms of data collected from sensors in areas of high activity in the urban environment, particularly at street intersections, are valuable resources for researchers interpreting the dynamics between vehicles, pedestrians, and the built environment. In this paper, we present a high-resolution audio, video, and LiDAR dataset of three urban intersections in Brooklyn, New York, totaling almost 8 unique hours. The data were collected with custom Reconfigurable Environmental Intelligence Platform (REIP) sensors that were designed with the ability to accurately synchronize multiple video and audio inputs. The resulting data are novel in that they are inclusively multimodal, multi-angular, high-resolution, and synchronized. We demonstrate four ways the data could be utilized — (1) to discover and locate occluded objects using multiple sensors and modalities, (2) to associate audio events with their respective visual representations using both video and audio modes, (3) to track the amount of each type of object in a scene over time, and (4) to measure pedestrian speed using multiple synchronized camera views. In addition to these use cases, our data are available for other researchers to carry out analyses related to applying machine learning to understanding the urban environment (in which existing datasets may be inadequate), such as pedestrian-vehicle interaction modeling and pedestrian attribute recognition. Such analyses can help inform decisions made in the context of urban sensing and smart cities, including accessibility-aware urban design and Vision Zero initiatives.
https://neclabs.wpengine.com/wp-content/uploads/2022/08/NEC-Labs-Blue-Logo-Square-300x267.jpg
0
0
NEC Labs America
https://neclabs.wpengine.com/wp-content/uploads/2022/08/NEC-Labs-Blue-Logo-Square-300x267.jpg
NEC Labs America2023-04-03 00:00:002024-03-31 22:17:52StreetAware: A High-Resolution Synchronized Multimodal Urban Scene DatasetDevices with limited computing resources use smaller AI models to achieve low-latency inferencing. However, model accuracy is typically much lower than the accuracy of a bigger model that is trained and deployed in places where the computing resources are relatively abundant. We describe DyCo, a novel system that ensures privacy of stream data and dynamically improves the accuracy of small models used in devices. Unlike knowledge distillation or federated learning, DyCo treats AI models as black boxes. DyCo uses a semi-supervised approach to leverage existing training frameworks and network model architectures to periodically train contextualized, smaller models for resource-constrained devices. DyCo uses a bigger, highly accurate model in the edge-cloud to auto-label data received from each sensor stream. Training in the edge-cloud (as opposed to the public cloud) ensures data privacy, and bespoke models for thousands of live data streams can be designed in parallel by using multiple edge-clouds. DyCo uses the auto-labeled data to periodically re-train, stream-specific, bespoke small models. To reduce the periodic training costs, DyCo uses different policies that are based on stride, accuracy, and confidence information.We evaluate our system, and the contextualized models, by using two object detection models for vehicles and people, and two datasets (a public benchmark and another real-world proprietary dataset). Our results show that DyCo increases the mAP accuracy measure of small models by an average of 16.3% (and up to 20%) for the public benchmark and an average of 19.0% (and up to 64.9%) for the real-world dataset. DyCo also decreases the training costs for contextualized models by more than an order of magnitude.
https://neclabs.wpengine.com/wp-content/uploads/2022/08/NEC-Labs-Blue-Logo-Square-300x267.jpg
0
0
NEC Labs America
https://neclabs.wpengine.com/wp-content/uploads/2022/08/NEC-Labs-Blue-Logo-Square-300x267.jpg
NEC Labs America2022-12-30 00:00:002024-03-25 18:14:35DyCo: Dynamic, Contextualized AI ModelsServerless edge computing aims to deploy and manage applications so that developers are unaware of challenges associated with dynamic management, sharing, and maintenance of the edge infrastructure. However, this is a non-trivial task because the resource usage by various edge applications varies based on the content in their input sensor data streams. We present a novel reinforcement-learning (RL) technique to maximize the processing rates of applications by dynamically allocating resources (like CPU cores or memory) to microservices in these applications. We model applications as analytics pipelines consisting of several microservices, and a pipeline’s processing rate directly impacts the accuracy of insights from the application. In our unique problem formulation, the state space or the number of actions of RL is independent of the type of workload in the microservices, the number of microservices in a pipeline, or the number of pipelines. This enables us to learn the RL model only once and use it many times to improve the accuracy of insights for a diverse set of AI/ML engines like action recognition or face recognition and applications with varying microservices. Our experiments with real-world applications, i.e., face recognition and action recognition, show that our approach outperforms other widely-used alternative approaches and achieves up to 2.5X improvement in the overall application processing rate. Furthermore, when we apply our RL model trained on a face recognition pipeline to a different and more complex action recognition pipeline, we obtain a 2X improvement in processing rate, thus showing the versatility and robustness of our RL model to pipeline changes.
https://neclabs.wpengine.com/wp-content/uploads/2022/08/NEC-Labs-Blue-Logo-Square-300x267.jpg
0
0
NEC Labs America
https://neclabs.wpengine.com/wp-content/uploads/2022/08/NEC-Labs-Blue-Logo-Square-300x267.jpg
NEC Labs America2022-11-29 00:00:002024-03-24 10:57:17DataX Allocator: Dynamic resource management for stream analytics at the EdgeCameras are increasingly being deployed in cities, enterprises and roads world-wide to enable many applications in public safety, intelligent transportation, retail, healthcare and manufacturing. Often, after initial deployment of the cameras, the environmental conditions and the scenes around these cameras change, and our experiments show that these changes can adversely impact the accuracy of insights from video analytics. This is because the camera parameter settings, though optimal at deployment time, are not the best settings for good-quality video capture as the environmental conditions and scenes around a camera change during operation. Capturing poor-quality video adversely affects the accuracy of analytics. To mitigate the loss in accuracy of insights, we propose a novel, reinforcement-learning based system APT that dynamically, and remotely (over 5G networks), tunes the camera parameters, to ensure a high-quality video capture, which mitigates any loss in accuracy of video analytics. As a result, such tuning restores the accuracy of insights when environmental conditions or scene content change. APT uses reinforcement learning, with no-reference perceptual quality estimation as the reward function. We conducted extensive real-world experiments, where we simultaneously deployed two cameras side-by-side overlooking an enterprise parking lot (one camera only has manufacturer-suggested default setting, while the other camera is dynamically tuned by APT during operation). Our experiments demonstrated that due to dynamic tuning by APT, the analytics insights are consistently better at all times of the day: the accuracy of object detection video analytics application was improved on average by ∼ 42%. Since our reward function is independent of any analytics task, APT can be readily used for different video analytics tasks.
https://neclabs.wpengine.com/wp-content/uploads/2022/08/NEC-Labs-Blue-Logo-Square-300x267.jpg
0
0
NEC Labs America
https://neclabs.wpengine.com/wp-content/uploads/2022/08/NEC-Labs-Blue-Logo-Square-300x267.jpg
NEC Labs America2022-11-29 00:00:002024-03-16 12:15:33APT: Adaptive Perceptual quality based camera Tuning using reinforcement learningIn Video Analytics Pipelines (VAP), Analytics Units (AUs) such as object detection and face recognition running on remote servers critically rely on surveillance cameras to capture high-quality video streams in order to achieve high accuracy. Modern IP cameras come with a large number of camera parameters that directly affect the quality of the video stream capture. While a few of such parameters, e.g., exposure, focus, white balance are automatically adjusted by the camera internally, the remaining ones are not. We denote such camera parameters as non-automated (NAUTO) parameters. In this paper, we first show that environmental condition changes can have significant adverse effect on the accuracy of insights from the AUs, but such adverse impact can potentially be mitigated by dynamically adjusting NAUTO camera parameters in response to changes in environmental conditions. We then present CamTuner, to our knowledge, the first framework that dynamically adapts NAUTO camera parameters to optimize the accuracy of AUs in a VAP in response to adverse changes in environmental conditions. CamTuner is based on SARSA reinforcement learning and it incorporates two novel components: a light-weight analytics quality estimator and a virtual camera that drastically speed up offline RL training. Our controlled experiments and real-world VAP deployment show that compared to a VAP using the default camera setting, CamTuner enhances VAP accuracy by detecting 15.9% additional persons and 2.6%–4.2% additional cars (without any false positives) in a large enterprise parking lot and 9.7% additional cars in a 5G smart traffic intersection scenario, which enables a new usecase of accurate and reliable automatic vehicle collision prediction (AVCP). CamTuner opens doors for new ways to significantly enhance video analytics accuracy beyond incremental improvements from refining deep-learning models.
https://neclabs.wpengine.com/wp-content/uploads/2022/08/NEC-Labs-Blue-Logo-Square-300x267.jpg
0
0
NEC Labs America
https://neclabs.wpengine.com/wp-content/uploads/2022/08/NEC-Labs-Blue-Logo-Square-300x267.jpg
NEC Labs America2022-11-07 00:00:002024-03-25 18:44:27Enhancing Video Analytics Accuracy via Real-time Automated Camera Parameter TuningIt is a common practice to think of a video as a sequence of images (frames), and re-use deep neural network models that are trained only on images for similar analytics tasks on videos. In this paper, we show that this “leap of faith” that deep learning models that work well on images will also work well on videos is actually flawed. We show that even when a video camera is viewing a scene that is not changing in any human-perceptible way, and we control for external factors like video compression and environment (lighting), the accuracy of video analytics application fluctuates noticeably. These fluctuations occur because successive frames produced by the video camera may look similar visually but are perceived quite differently by the video analytics applications. We observed that the root cause for these fluctuations is the dynamic camera parameter changes that a video camera automatically makes in order to capture and produce a visually pleasing video. The camera inadvertently acts as an “unintentional adversary” because these slight changes in the image pixel values in consecutive frames, as we show, have a noticeably adverse impact on the accuracy of insights from video analytics tasks that re-use image-trained deep learning models. To address this inadvertent adversarial effect from the camera, we explore the use of transfer learning techniques to improve learning in video analytics tasks through the transfer of knowledge from learning on image analytics tasks. Our experiments with a number of different cameras, and a variety of different video analytics tasks, show that the inadvertent adversarial effect from the camera can be noticeably offset by quickly re-training the deep learning models using transfer learning. In particular, we show that our newly trained Yolov5 model reduces fluctuation in object detection across frames, which leads to better tracking of objects (∼40% fewer mistakes in tracking). Our paper also provides new directions and techniques to mitigate the camera’s adversarial effect on deep learning models used for video analytics applications.
https://neclabs.wpengine.com/wp-content/uploads/2022/08/NEC-Labs-Blue-Logo-Square-300x267.jpg
0
0
NEC Labs America
https://neclabs.wpengine.com/wp-content/uploads/2022/08/NEC-Labs-Blue-Logo-Square-300x267.jpg
NEC Labs America2022-10-23 00:00:002024-03-31 21:20:24Why is the video analytics accuracy fluctuating, and what can we do about it?