Intelligent Transportation Systems (ITS) use advanced technologies, such as traffic cameras and data analytics, to improve the efficiency, safety, and management of urban traffic. ITS integrates various components like real-time traffic monitoring, traffic management systems, law enforcement tools, and pedestrian safety mechanisms. These systems rely on vast amounts of video data from multiple cameras at intersections, requiring sophisticated tools like Vision-Language Models (VLMs) for data processing and analysis.

Posts

TrafficLens: Multi-Camera Traffic Video Analysis Using LLMs

Traffic cameras are essential in urban areas, playing a crucial role in intelligent transportation systems. Multiple cameras at intersections enhance law enforcement capabilities, traffic management, and pedestrian safety. However, efficiently managing and analyzing multi-camera feeds poses challenges due to the vast amount of data. Analyzing such huge video data requires advanced analytical tools. While Large Language Models (LLMs) like ChatGPT, equipped with retrieval-augmented generation (RAG) systems, excel in text-based tasks, integrating them into traffic video analysis demands converting video data into text using a Vision-Language Model (VLM), which is time-consuming and delays the timely utilization of traffic videos for generating insights and investigating incidents. To address these challenges, we propose TrafficLens, a tailored algorithm for multi-camera traffic intersections. TrafficLens employs a sequential approach, utilizing overlapping coverage areas of cameras. It iteratively applies VLMs with varying token limits, using previous outputs as prompts for subsequent cameras, enabling rapid generation of detailed textual descriptions while reducing processing time. Additionally, TrafficLens intelligently bypasses redundant VLM invocations through an object-level similarity detector. Experimental results with real-world datasets demonstrate that TrafficLens reduces video-to-text conversion time by up to 4× while maintaining information accuracy.