Jian Fang NEC Labs America

Jian Fang

Researcher

Optical Networking & Sensing

Posts

Text-guided Device-realistic Sound Generation for Fiber-based Sound Event Classification

Recent advancements in unique acoustic sensing devices and large-scale audio recognition models have unlocked new possibilities for environmental sound monitoring and detection. However, applying pretrained models to non-conventional acoustic sensors results in performance degradation due to domain shifts, caused by differences in frequency response and noise characteristics from the original training data. In this study, we introduce a text-guided framework for generating new datasets to retrain models specifically for these non-conventional sensors efficiently. Our approach integrates text-conditional audio generative models with two additional steps: (1) selecting audio samples based on text input to match the desired sounds, and (2) applying domain transfer techniques using recorded impulse responses and background noise to simulate the characteristics of the sensors. We demonstrate this process by generating emulated signals for fiber-optic Distributed Acoustic Sensors (DAS), creating datasets similar to the recorded ESC-50 dataset. The generated signals are then used to train a classifier, which outperforms few-shot learning approaches in environmental sound classification.

High-Sensitivity Forward-Transmission Vibration Sensing for Real-World Event Detection in Urban Fiber Networks

Publication Date: 4/3/2025 Event: OFC 2025 Reference: Th4C.2: 1-3, 2025 Authors: Jian Fang, NEC Laboratories America, Inc.; Ming-Fang Huang, NEC Laboratories America, Inc.; Scott Kotrla, Verizon; Tiejun J. Xia, Verizon; Glenn A. Wellbrock, Verizon; Jeffrey A Mundt, Verizon; Ting Wang, NEC Laboratories America, Inc.; Yoshiaki Aono, NEC Corporation Abstract: Publication Link:

1.2 Tb/s/l Real Time Mode Division Multiplexing Free Space Optical Communication with Commercial 400G Open and Disaggregated Transponders

We experimentally demonstrate real time mode division multiplexing free space optical communication with commercial 400G open and disaggregated transponders. As proof of concept,using HG00, HG10, and HG01 modes, we transmit 1.2 Tb/s/l (3´1l´400Gb/s) error free.

Multi-Event Distributed Forwarding Sensing with Dual-Sensor Adaptive Beamforming

We present adaptive beamforming techniques to forward-transmission multi-event vibration sensing in environments with interference and jamming. Experimental validation over 100km fiber demonstrates significant improvements on signal reconstruction, noise reduction, and interference rejection from other locations.

Underwater Acoustic OFDM Transmission over Optical Fiber with Distributed Acoustic Sensing

We demonstrate fiber-optic acoustic data transmission using distributed acoustic sensing technology in an underwater environment. An acoustic orthogonal frequencydivisionmultiplexing (OFDM) signal transmitted through a fiber-optic cable deployed in a standard 40-meter-scale underwater testbed.

NEC Labs America Attends OFC 2025 in San Francisco

The NEC Labs America Optical Networking and Sensing team is attending the 2025 Optical Fiber Communications Conference and Exhibition (OFC), the premier global event for optical networking and communications. Bringing together over 13,500 attendees from 83+ countries, more than 670 exhibitors, and hundreds of sessions featuring industry leaders, OFC 2025 serves as the central hub for innovation and collaboration in the field. At this year’s conference, NEC Labs America will showcase its cutting-edge research and advancements through multiple presentations, demonstrations, and workshops.

Free-Space Optical Sensing Using Vector Beam Spectra

Vector beams are spatial modes that have spatially inhomogeneous states of polarization. Any light beam is a linear combination of vector beams, the coefficients of which comprise a vector beam “spectrum.” In this work, through numerical calculations, a novel method of free-space optical sensing is demonstrated using vector beam spectra, which are shown to be experimentally measurable via Stokes polarimetry. As proof of concept, vector beam spectra are numerically calculated for various beams and beam obstructions.

400-Gb/s mode division multiplexing-based bidirectional free space optical communication in real-time with commercial transponders

In this work, for the first time, we experimentally demonstrate mode division multiplexing-based bidirectional free space optical communication in real-time using commercial transponders. As proof of concept, via bidirectional pairs of Hermite-Gaussian modes (HG00, HG10, and HG01), using a Telecom Infra Project Phoenix compliant commercial 400G transponder, 400-Gb/s data signals (56-Gbaud, DP-16QAM) are bidirectionally transmitted error free, i.e., with less than 1e-2 pre-FEC BERs, over approximately 1-m of free space

Deep Learning-based Intrusion Detection and Impulsive Event Classification for Distributed Acoustic Sensing across Telecom Networks

We introduce two pioneering applications leveraging Distributed Fiber Optic Sensing (DFOS) and Machine Learning (ML) technologies. These innovations offer substantial benefits forfortifying telecom infrastructures and public safety. By harnessing existing telecom cables, our solutions excel in perimeter intrusion detection via buried cables and impulsive event classification through aerial cables. To achieve comprehensive intrusion detection, we introduce a label encoding strategy for multitask learning and evaluate the generalization performance of the proposed approach across various domain shifts. For accurate recognition of impulsive acoustic events, we compare several standard choices of representations for raw waveform data and neural network architectures, including convolutional neural networks (ConvNets) and vision transformers (ViT).We also study the effectiveness of the built-in inductive biases under both high- and low-fidelity sensing conditions and varying amounts of labeled training data. All computations are executed locally through edge computing, ensuring real-time detection capabilities. Furthermore, our proposed system seamlessly integrates with cameras for video analytics, significantly enhancing overall situation awareness of the surrounding environment.

Distributed Fiber-Optic Sensor as an Acoustic Communication Receiver Array

A novel acoustic transmission technique using distributed acoustic sensors is introduced. By choosing better incident angles for smaller fading and employing an 8- channel beamformer, over 10KB data is transmitted at a 6.4kbps data rate.