Posts

Structural Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs

Structural Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs Detecting anomalies in dynamic graphs is a vital task, with numerous practical applications in areas such as security, finance, and social media. Existing network embedding based methods have mostly focused on learning good node representations, whereas largely ignoring the subgraph structural changes related to the target nodes in a given time window. In this paper, we propose StrGNN, an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs. In particular, we first extract the h-hop enclosing subgraph centered on the target edge and propose a node labeling function to identify the role of each node in the subgraph. Then, we leverage the graph convolution operation and Sortpooling layer to extract the fixed-size feature from each snapshot/timestamp. Based on the extracted features, we utilize the Gated Recurrent Units to capture the temporal information for anomaly detection. We fully implement StrGNN and deploy it into a real enterprise security system, and it greatly helps detect advanced threats and optimize the incident response. Extensive experiments on six benchmark datasets also demonstrate the effectiveness of StrGNN.

This is Why We Can’t Cache Nice Things: Lightning-Fast Threat Hunting using Suspicion-Based Hierarchical Storage

This is Why We Can’t Cache Nice Things: Lightning-Fast Threat Hunting using Suspicion-Based Hierarchical Storage Recent advances in the causal analysis can accelerate incident response time, but only after a causal graph of the attack has been constructed. Unfortunately, existing causal graph generation techniques are mainly offline and may take hours or days to respond to investigator queries, creating greater opportunity for attackers to hide their attack footprint, gain persistency, and propagate to other machines. To address that limitation, we present Swift, a threat investigation system that provides high-throughput causality tracking and real-time causal graph generation capabilities. We design an in-memory graph database that enables space-efficient graph storage and online causality tracking with minimal disk operations. We propose a hierarchical storage system that keeps forensically-relevant part of the causal graph in main memory while evicting rest to disk. To identify the causal graph that is likely to be relevant during the investigation, we design an asynchronous cache eviction policy that calculates the most suspicious part of the causal graph and caches only that part in the main memory. We evaluated Swift on a real-world enterprise to demonstrate how our system scales to process typical event loads and how it responds to forensic queries when security alerts occur. Results show that Swift is scalable, modular, and answers forensic queries in real-time even when analyzing audit logs containing tens of millions of events.

Anomaly Detection on Web-User Behaviors through Deep Learning

Anomaly Detection on Web-User Behaviors through Deep Learning The modern Internet has witnessed the proliferation of web applications that play a crucial role in the branding process among enterprises. Web applications provide a communication channel between potential customers and business products. However, web applications are also targeted by attackers due to sensitive information stored in these applications. Among web-related attacks, there exists a rising but more stealthy attack where attackers first access a web application on behalf of normal users based on stolen credentials. Then attackers follow a sequence of sophisticated steps to achieve the malicious purpose. Traditional security solutions fail to detect relevant abnormal behaviors once attackers login to the web application. To address this problem, we propose WebLearner, a novel system to detect abnormal web-user behaviors. As we demonstrate in the evaluation, WebLearner has an outstanding performance. In particular, it can effectively detect abnormal user behaviors with over 96% for both precision and recall rates using a reasonably small amount of normal training data.

A Generic Edge-Empowered Graph Convolutional Network via Node-Edge Mutual Enhancement

A Generic Edge-Empowered Graph Convolutional Network via Node-Edge Mutual Enhancement Graph Convolutional Networks (GCNs) have shown to be a powerful tool for analyzing graph-structured data. Most of previous GCN methods focus on learning a good node representation by aggregating the representations of neighboring nodes, whereas largely ignoring the edge information. Although few recent methods have been proposed to integrate edge attributes into GCNs to initialize edge embeddings, these methods do not work when edge attributes are (partially) unavailable. Can we develop a generic edge-empowered framework to exploit node-edge enhancement, regardless of the availability of edge attributes? In this paper, we propose a novel framework EE-GCN that achieves node-edge enhancement. In particular, the framework EE-GCN includes three key components: (i) Initialization: this step is to initialize the embeddings of both nodes and edges. Unlike node embedding initialization, we propose a line graph-based method to initialize the embedding of edges regardless of edge attributes. (ii) Feature space alignment: we propose a translation-based mapping method to align edge embedding with node embedding space, and the objective function is penalized by a translation loss when both spaces are not aligned. (iii) Node-edge mutually enhanced updating: node embedding is updated by aggregating embedding of neighboring nodes and associated edges, while edge embedding is updated by the embedding of associated nodes and itself. Through the above improvements, our framework provides a generic strategy for all of the spatial-based GCNs to allow edges to participate in embedding computation and exploit node-edge mutual enhancement. Finally, we present extensive experimental results to validate the improved performances of our method in terms of node classification, link prediction, and graph classification.

APTrace: A Responsive System for Agile Enterprise Level Causality Analysis

APTrace: A Responsive System for Agile Enterprise Level Causality Analysis While backtracking analysis has been successful in assisting the investigation of complex security attacks, it faces a critical dependency explosion problem. To address this problem, security analysts currently need to tune backtracking analysis manually with different case-specific heuristics. However, existing systems fail to fulfill two important system requirements to achieve effective backtracking analysis. First, there need flexible abstractions to express various types of heuristics. Second, the system needs to be responsive in providing updates so that the progress of backtracking analysis can be frequently inspected, which typically involves multiple rounds of manual tuning. In this paper, we propose a novel system, APTrace, to meet both of the above requirements. As we demonstrate in the evaluation, security analysts can effectively express heuristics to reduce more than 99.5% of irrelevant events in the backtracking analysis of real-world attack cases. To improve the responsiveness of backtracking analysis, we present a novel execution-window partitioning algorithm that significantly reduces the waiting time between two consecutive updates (especially, 57 times reduction for the top 1% waiting time).