Posts

Enabling Cooperative Hybrid Beamforming in TDD-based Distributed MIMO Systems

Distributed massive MIMO networks are envisioned to realize cooperative multi-point transmission in next-generation wireless systems. For efficient cooperative hybrid beamforming, the cluster of access points (APs) needs to obtain precise estimates of the uplink channel to perform reliable downlink precoding. However, due to the radio frequency (RF) impairments between the transceivers at the two en-points of the wireless channel, full channel reciprocity does not hold which results in performance degradation in the cooperative hybrid beamforming (CHBF) unless a suitable reciprocity calibration mechanism is in place. We propose a two-step approach to calibrate any two hybrid nodes in the distributed MIMO system. We then present and utilize the novel concept of reciprocal tandem to propose a low-complexity approach for jointly calibrating the cluster of APs and estimating the downlink channel. Finally, we validate our calibration technique’s effectiveness through numerical simulation.

Blind Cyclic Prefix-based CFO Estimation in MIMO-OFDM Systems

Low-complexity estimation and correction of carrier frequency offset (CFO) are essential in orthogonal frequency division multiplexing (OFDM). In this paper, we propose a low overhead blind CFO estimation technique based on cyclic prefix (CP), in multi-input multi-output (MIMO)-OFDM systems. We propose to use antenna diversity for CFO estimation. Given that the RF chains for all antenna elements at a communication node share the same clock, the carrier frequency offset (CFO) between two points may be estimated by using the combination of the received signal at all antennas. We improve our method by combining the antenna diversity with time diversity by considering the CP for multiple OFDM symbols. We provide a closed-form expression for CFO estimation and present algorithms that can considerably improve the CFO estimation performance at the expense of a linear increase in computational complexity. We validate the effectiveness of our estimation scheme via extensive numerical analysis.

Enabling Cooperative Hybrid Beamforming in TDD-based Distributed MIMO Systems

Enabling Cooperative Hybrid Beamforming in TDD-based Distributed MIMO Systems Distributed massive MIMO networks are envisioned to realize cooperative multi-point transmission in next-generation wireless systems. For efficient cooperative hybrid beamforming, the cluster of access points (APs) needs to obtain precise estimates of the uplink channel to perform reliable downlink precoding. However, due to the radio frequency (RF) impairments between the transceivers at the two en-points of the wireless channel, full channel reciprocity does not hold which results in performance degradation in the cooperative hybrid beamforming (CHBF) unless a suitable reciprocity calibration mechanism is in place. We propose a two-step approach to calibrate any two hybrid nodes in the distributed MIMO system. We then present and utilize the novel concept of reciprocal tandem to propose a low-complexity approach for jointly calibrating the cluster of APs and estimating the downlink channel. Finally, we validate our calibration technique’s effectiveness through numerical simulation.

RIS-aided mmWave Beamforming for Two-way Communications of Multiple Pairs

RIS-aided mmWave Beamforming for Two-way Communications of Multiple Pairs Millimeter‑wave (mmWave) communications is a key enabler towards realizing enhanced Mobile Broadband (eMBB) as a key promise of 5G and beyond, due to the abundance of bandwidth available at mmWave bands. An mmWave coverage map consists of blind spots due to shadowing and fading especially in dense urban environments. Beamformingemploying massive MIMO is primarily used to address high attenuation in the mmWave channel. Due to their ability in manipulating the impinging electromagnetic waves in an energy‑efficient fashion, Reconfigurable Intelligent Surfaces (RISs) are considered a great match to complement the massive MIMO systems in realizing the beamforming task and therefore effectively filling in the mmWave coverage gap. In this paper, we propose a novel RIS architecture, namely RIS‑UPA where the RIS elements are arranged in a Uniform Planar Array (UPA). We show how RIS‑UPA can be used in an RIS‑aided MIMO system to fill the coverage gap in mmWave by forming beams of a custom footprint, with optimized main lobe gain, minimum leakage, and fairly sharp edges. Further, we propose a configuration for RIS‑UPA that can support multiple two‑way communication pairs, simultaneously. We theoretically obtain closed‑form low‑complexity solutions for our design and validate our theoretical findings by extensive numerical experiments.

The Trade-off between Scanning Beam Penetration and Transmission Beam Gain in mmWave Beam Alignment

The Trade-off between Scanning Beam Penetration and Transmission Beam Gain in mmWave Beam Alignment Beam search algorithms have been proposed to align the beams from an access point to a user equipment. The process relies on sending beams from a set of scanning beams (SB) and tailoring a transmission beam (TB) using the received feedback. In this paper, we discuss a fundamental trade-off between the gain of SBs and TBs. The higher the gain of an SB, the better the penetration of the SB and the higher the gain of the TB the better the communication link performance. However, TB depends on the set of SBs and by increasing the coverage of each SB and in turn reducing its penetration, there is more opportunity to find a sharper TB to increase its beamforming gain. We define a quantitative measure for such trade-off in terms of a trade-off curve. We introduce SB set design namely Tulip design and formally prove it achieves this fundamental trade-off curve for channels with a single dominant path. We also find closed-form solutions for the trade-off curve for special cases and provide an algorithm with its performance evaluation results to find the trade-off curve revealing the need for further optimization on the SB sets in the state-of-the-art beam search algorithms.

Application-specific, Dynamic Reservation of 5G Compute and Network Resources by using Reinforcement Learning

Application-specific, Dynamic Reservation of 5G Compute and Network Resources by using Reinforcement Learning 5G services and applications explicitly reserve compute and network resources in today’s complex and dynamic infrastructure of multi-tiered computing and cellular networking to ensure application-specific service quality metrics, and the infrastructure providers charge the 5G services for the resources reserved. A static, one-time reservation of resources at service deployment typically results in extended periods of under-utilization of reserved resources during the lifetime of the service operation. This is due to a plethora of reasons like changes in content from the IoT sensors (for example, change in number of people in the field of view of a camera) or a change in the environmental conditions around the IoT sensors (for example, time of the day, rain or fog can affect data acquisition by sensors). Under-utilization of a specific resource like compute can also be due to temporary inadequate availability of another resource like the network bandwidth in a dynamic 5G infrastructure. We propose a novel Reinforcement Learning-based online method to dynamically adjust an application’s compute and network resource reservations to minimize under-utilization of requested resources, while ensuring acceptable service quality metrics. We observe that a complex application-specific coupling exists between the compute and network usage of an application. Our proposed method learns this coupling during the operation of the service, and dynamically modulates the compute and network resource requests to mimimize under-utilization of reserved resources. Through experimental evaluation using real-world video analytics application, we show that our technique is able to capture complex compute-network coupling relationship in an online manner i.e. while the application is running, and dynamically adapts and saves up to 65% compute and 93% network resources on average (over multiple runs), without significantly impacting application accuracy.

Multi-user Beam Alignment in Presence of Multi-path

Multi-user Beam Alignment in Presence of Multi-path To overcome the high pathloss and the intense shadowing in millimeterwave (mmWave) communications, effective beamforming schemes are required which incorporate narrow beams with high beamforming gains. The mm Wave channel consists of a few spatial clusters each associated with an angle of departure (AoD). The narrow beams must be aligned with the channel AoDs to increase the beamforming gain. This is achieved through a procedure called beam alignment (BA). Most of the BA schemes in the literature consider channels with a single dominant path while in practice the channel has a few resolvable paths with different AoDs, hence, such BA schemes may not work correctly in the presence of multi-path or at the least do not exploit such multi path to achieve diversity or increase robustness. In this paper, we propose an efficient BA schemes in presence of multi-path. The proposed BA scheme transmits probing packets using a set of scanning beams and receives the feedback for all the scanning beams at the end of probing phase from each user. We formulate the BA scheme as minimizing the expected value of the average transmission beamwidth under different policies. The policy is defined as a function from the set of received feedback to the set of transmission beams (TB). In order to maximize the number of possible feedback sequences, we prove that the set of scanning beams (SB) has an special form, namely, Tulip Design. Consequently, we rewrite the minimization problem with a set of linear constraints and reduced number of variables which is solved by using an efficient greedy algorithm.

Codebook Design for Composite Beamforming in Next generation mmWave Systems

Codebook Design for Composite Beamforming in Next generation mmWave Systems In pursuance of the unused spectrum in higher frequencies, millimeter wave (mmWave) bands have a pivotal role. However, the high path loss and poor scattering associated with mmWave communications highlight the necessity of employing effective beamforming techniques. In order to efficiently search for the beam to serve a user and to jointly serve multiple users it is often required to use a composite beam which consists of multiple disjoint lobes. A composite beam covers multiple desired angular coverage intervals (ACIs) and ideally has maximum and uniform gain (smoothness) within each desired ACI, negligible gain (leakage) outside the desired ACIs, and sharp edges. We propose an algorithm for designing such ideal composite codebook by providing an analytical closed form solution with low computational complexity. There is a fundamental trade off between the gain, leakage and smoothness of the beams. Our design allows to achieve different values in such trade off based on changing the design parameters. We highlight the shortcomings of the uniform linear arrays (ULAs) in building arbitrary composite beams. Consequently, we use a recently introduced twin ULA (TULA) antenna structure to effectively resolve these inefficiencies. Numerical results are used to validate the theoretical findings.

Multi user Beam Alignment in Presence of Multi path

Multi user Beam Alignment in Presence of Multi path To overcome the high path loss and the intense shadowing in millimeter wave (mmWave) communications, effective beamforming schemes are required which incorporate narrow beams with high beamforming gains. The mmWave channel consists of a few spatial clusters each associated with an angle of departure (AoD). The narrow beams must be aligned with the channel AoDs to increase the beamforming gain. This is achieved through a procedure called beam alignment (BA). Most of the BA schemes in the literature consider channels with a single dominant path while in practice the channel has a few resolvable paths with different AoDs, hence, such BA schemes may not work correctly in the presence of multi path or at the least do not exploit such multipath to achieve diversity or increase robustness. In this paper, we propose an efficient BA scheme in presence of multi path. The proposed BA scheme transmits probing packets using a set of scanning beams and receives feedback for all the scanning beams at the end of the probing phase from each user. We formulate the BA scheme as minimizing the expected value of the average transmission beamwidth under different policies. The policy is defined as a function from the set of received feedback to the set of transmission beams (TB). In order to maximize the number of possible feedback sequences, we prove that the set of scanning beams (SB) has a special form, namely, Tulip Design. Consequently, we rewrite the minimization problem with a set of linear constraints and a reduced number of variables which is solved by using an efficient greedy algorithm.