Karthikeyan Sundaresan is a former Senior Researcher at NEC Laboratories America, Inc.

Posts

RoVaR: Robust Multi-agent Tracking through Dual-layer Diversity in Visual and RF Sensor Fusion

The plethora of sensors in our commodity devices provides a rich substrate for sensor-fused tracking. Yet, today’s solutions are unable to deliver robust and high tracking accuracies across multiple agents in practical, everyday environments – a feature central to the future of immersive and collaborative applications. This can be attributed to the limited scope of diversity leveraged by these fusion solutions, preventing them from catering to the multiple dimensions of accuracy, robustness (diverse environmental conditions) and scalability (multiple agents) simultaneously.In this work, we take an important step towards this goal by introducing the notion of dual-layer diversity to the problem of sensor fusion in multi-agent tracking. We demonstrate that the fusion of complementary tracking modalities, – passive/relative (e.g. visual odometry) and active/absolute tracking (e.g.infrastructure-assisted RF localization) offer a key first layer of diversity that brings scalability while the second layer of diversity lies in the methodology of fusion, where we bring together the complementary strengths of algorithmic (for robustness) and data-driven (for accuracy) approaches. ROVAR is an embodiment of such a dual-layer diversity approach that intelligently attends to cross-modal information using algorithmic and data-driven techniques that jointly share the burden of accurately tracking multiple agents in the wild. Extensive evaluations reveal ROVAR’S multi-dimensional benefits in terms of tracking accuracy, scalability and robustness to enable practical multi-agent immersive applications in everyday environments.

Mosaic: Leveraging Diverse Reflector Geometries for Omnidirectional Around-Corner Automotive Radar

A large number of traffic collisions occur as a result of obstructed sight lines, such that even an advanced driver assistance system would be unable to prevent the crash. Recent work has proposed the use of around-the-corner radar systems to detect vehicles, pedestrians, and other road users in these occluded regions. Through comprehensive measurement, we show that these existing techniques cannot sense occluded moving objects in many important real-world scenarios. To solve this problem of limited coverage, we leverage multiple, curved reflectors to provide comprehensive coverage over the most important locations near an intersection. In scenarios where curved reflectors are insufficient, we evaluate the relative benefits of using additional flat planar surfaces. Using these techniques, we more than double the probability of detecting a vehicle near the intersection in three real urban locations and enable NLoS radar sensing using an entirely new class of reflectors.

SkyHAUL: A Self-Organizing Gigabit Network In The Sky

We design and build SkyHaul, the first large-scale, self-organizing network of Unmanned Aerial Vehicles (UAVs) that are connected using a mm Wave wireless mesh backhaul. While the use of a mmWave backhaul paves the way for a new class of bandwidth-intensive, latency-sensitive cooperative applications (e.g. LTE coverage during disasters), the network of UAVs allows these applications to be executed at operating ranges that are far beyond the line-of-sight distances that limit individual UAVs today.To realize the challenging vision of deploying and maintaining an airborne, mm Wave mesh backhaul that caters to dynamic applications, SkyHaul’s design incorporates various elements: (i) Role-specific UAV operations that simultaneously address application tracking and backhaul connectivity (ii) Novel algorithms to jointly address the problem of deployment (position, yaw of UAVs) and traffic routing across the UAV network, and (iii)A provably optimal solution for fast and safe reconfiguration of UAV backhaul during application dynamics. We evaluate the performance of SkyHaul through both real-world UAV flight operations as well as large scale simulations.

SpaceBeam: LiDAR-Driven One-Shot mmWave Beam Management

mmWave 5G networks promise to enable a new generation of networked applications requiring a combination of high throughput and ultra-low latency. However, in practice, mmWave performance scales poorly for large numbers of users due to the significant overhead required to manage the highly-directional beams. We find that we can substantially reduce or eliminate this overhead by using out-of-band infrared measurements of the surrounding environment generated by a LiDAR sensor. To accomplish this, we develop a ray-tracing system that is robust to noise and other artifacts from the infrared sensor, create a method to estimate the reflection strength from sensor data, and finally apply this information to the multiuser beam selection process. We demonstrate that this approach reduces beam-selection overhead by over 95% in indoor multi-user scenarios, reducing network latency by over 80% and increasing throughput by over 2× in mobile scenarios.

Redefining Passive in Backscattering with Commodity Devices

The recent innovation of frequency-shifted (FS) backscatter allows for backscattering with commodity devices, which are inherently half-duplex. However, their reliance on oscillators for generating the frequency-shifting signal on the tag, forces them to incur the transient phase of the oscillator before steady-state operation. We show how the oscillator’s transient phase can pose a fundamental limitation for battery-less tags, resulting in significantly low bandwidth efficiencies, thereby limiting their practical usage.To this end, we propose a novel approach to FS-backscatter called xSHIFT that shifts the core functionality of FS away from the tag and onto the commodity device, thereby eliminating the need for on-tag oscillators altogether. The key innovation in xSHIFT lies in addressing the formidable challenges that arise in making this vision a reality. Specifically, xSHIFT’s design is built on the construct of beating twin carrier tones through a non-linear device to generate the desired FS signal – while the twin RF carriers are generated externally through a careful embedding into the resource units of commodity WiFi transmissions, the beating is achieved through a carefully-designed passive tag circuitry. We prototype xSHIFT’s tag, which is the same form factor as RFID Gen 2 tags, and characterize its promising real-world performance. We believe xSHIFT demonstrates one of the first, truly passive tag designs that has the potential to bring commodity backscatter to consumer spaces.

TrackIO: Tracking First Responders Inside-Out

First responders, a critical lifeline of any society, often find themselves in precarious situations. The ability to track them in real-time in unknown indoor environments would significantly contribute to the success of their mission as well as their safety. In this work, we present the design, implementation and evaluation of TrackIO–a system capable of accurately localizing and tracking mobile responders real-time in large indoor environments. TrackIO leverages the mobile virtual infrastructure offered by unmanned aerial vehicles (UAVs), coupled with the balanced penetration-accuracy tradeoff offered by ultra-wideband (UWB), to accomplish this objective directly from outside, without relying on access to any indoor infrastructure. Towards a practical system, TrackIO incorporates four novel mechanisms in its design that address key challenges to enable tracking responders (i) who are mobile with potentially non-uniform velocities (e.g. during turns), (ii) deep indoors with challenged reachability, (iii) in real-time even for a large network, and (iv) with high accuracy even when impacted by UAV’s position error. TrackIO’s real-world performance reveals that it can track static nodes with a median accuracy of about 1–1.5m and mobile (even running) nodes with a median accuracy of 2–2.5m in large buildings in real-time.

SkyRAN: A Self-Organizing LTE RAN in the Sky

We envision a flexible, dynamic airborne LTE infrastructure built upon Unmanned Autonomous Vehicles (UAVs) that will provide on-demand, on-time, network access, anywhere. In this paper, we design, implement and evaluate SkyRAN, a self-organizing UAV-based LTE RAN (Radio Access Network) that is a key component of this UAV LTE infrastructure network. SkyRAN determines the UAV’s operating position in 3D airspace so as to optimize connectivity to all the UEs on the ground. It realizes this by overcoming various challenges in constructing and maintaining radio environment maps to UEs that guide the UAV’s position in real-time. SkyRAN is designed to be scalable in that it can be quickly deployed to provide efficient connectivity even over a larger area. It is adaptive in that it reacts to changes in the terrain and UE mobility, to maximize LTE coverage performance while minimizing operating overhead. We implement SkyRAN on a DJI Matrice 600 Pro drone and evaluate it over a 90 000 m2 operating area. Our testbed results indicate that SkyRAN can place the UAV in the optimal location with about 30 secs of a measurement flight. On an average, SkyRAN achieves a throughput of 0.9 – 0.95X of optimal, which is about 1.5 – 2X over other popular baseline schemes.

SkyCore: Moving Core to the Edge for Untethered and Reliable UAV-based LTE Networks

The advances in unmanned aerial vehicle (UAV) technology have empowered mobile operators to deploy LTE base stations (BSs) on UAVs, and provide on-demand, adaptive connectivity to hotspot venues as well as emergency scenarios. However, today’s evolved packet core (EPC) that orchestrates the LTE RAN faces fundamental limitations in catering to such a challenging, wireless and mobile UAV environment, particularly in the presence of multiple BSs (UAVs). In this work, we argue for and propose an alternate, radical edge EPC design, called SkyCore that pushes the EPC functionality to the extreme edge of the core network – collapses the EPC into a single, light-weight, self-contained entity that is co-located with each of the UAV BS. SkyCore incorporates elements that are designed to address the unique challenges facing such a distributed design in the UAV environment, namely the resource-constraints of UAV platforms, and the distributed management of pronounced UAV and UE mobility. We build and deploy a fully functional version of SkyCore on a two-UAV LTE network and showcase its (i) ability to interoperate with commercial LTE BSs as well as smartphones, (ii) support for both hotspot and standalone multi-UAV deployments, and (iii) superior control and data plane performance compared to other EPC variants in this environment.

ELI: Empowering LTE with Interference Awareness in Unlicensed Spectrum

The advent of LTE into the unlicensed spectrum has necessitated the understanding of its operational efficiency when sharing spectrum with different radio access technologies. Our study reveals that LTE, owing to its inherent transmission characteristics, suffers significant performance degradation in the presence of interference caused by hidden terminals. This motivates the need for interference-awareness in LTE’s channel access in unlicensed spectrum. To address this problem, we propose ELI. ELI’s three-pronged solution equips the LTE base station with novel techniques to: (a) accurately detect and measure interference caused by hidden terminals, (b) collect interference statistics from clients across different channels with affordable overhead, and (c) leverage interference-awareness to improve its channel access performance. Our evaluations show that ELI can achieve 1.5-2x throughput gains over baseline schemes. Finally, ELI is LTE-LAA/MulteFire-standard compliant and can be deployed over the existing LTE-LAA implementation without any modifications.

SkyLiTE: End-to-End Design of Low-altitutde UAV Networks for Providing LTE Connectivity

Un-manned aerial vehicle (UAVs) have the potential to change the landscape of wide-area wireless connectivity by bringing them to areas where connectivity was sparing or non-existent (e.g. rural areas) or has been compromised due to disasters. While Google’s Project Loon and Facebook’s Project Aquila are examples of high-altitude, long-endurance UAV-based connectivity efforts in this direction, the telecom operators (e.g. AT&T and Verizon) have been exploring low-altitude UAV-based LTE solutions for on-demand deployments. Understandably, these projects are in their early stages and face formidable challenges in their realization and deployment. The goal of this document is to expose the reader to both the challenges as well as the potential offered by these unconventional connectivity solutions. We aim to explore the end-to-end design of such UAV-based connectivity networks particularly in the context of low-altitude UAV networks providing LTE connectivity. Specifically, we aim to highlight the challenges that span across multiple layers (access, core network, and backhaul) in an inter-twined manner as well as the richness and complexity of the design space itself. To help interested readers navigate this complex design space towards a solution, we also articulate the overview of one such end-to-end design, namely SkyLiTE– a self-organizing network of low-altitude UAVs that provide optimized LTE connectivity in a desired region.