Knowledge Distillation is a process in machine learning where a compact and more easily manageable model, known as the “student” model, is trained to replicate the behavior of a larger and more complex “teacher” model. The teacher model has typically been trained on a more extensive dataset or has higher capacity, and the goal is to transfer its knowledge to the smaller student model.


Personalized Semantics Excitation for Federated Image Classification

Federated learning casts a light on the collaboration of distributed local clients with privacy protected to attain a more generic global model. However, significant distribution shift in input/label space across different clients makes it challenging to well generalize to all clients, which motivates personalized federated learning (PFL). Existing PFL methods typically customize the local model by fine-tuning with limited local supervision and the global model regularizer, which secures local specificity but risks ruining the global discriminative knowledge. In this paper, we propose a novel Personalized Semantics Excitation (PSE) mechanism to breakthrough this limitation by exciting and fusing personalized semantics from the global model during local model customization. Specifically, PSE explores channel-wise gradient differentiation across global and local models to identify important low-level semantics mostly from convolutional layers which are embedded into the client-specific training.In addition, PSE deploys the collaboration of global and local models to enrich high-level feature representations and facilitate the robustness of client classifier through a cross-model attention module. Extensive experiments and analysis on various image classification benchmarks demonstrate the effectiveness and advantage of our method over the state-of-the-art PFL methods.

Unsupervised Anomaly Detection with Self-Training and Knowledge Distillation

Anomaly Detection (AD) aims to find defective patterns or abnormal samples among data, and has been a hot research topic due to various real-world applications. While various AD methods have been proposed, most of them assume the availability of a clean (anomaly-free) training set, which, however, may be hard to guarantee in many real-world industry applications. This motivates us to investigate Unsupervised Anomaly Detection (UAD) in which the training set includes both normal and abnormal samples. In this paper, we address the UAD problem by proposing a Self-Training and Knowledge Distillation (STKD) model. STKD combats anomalies in the training set by iteratively alternating between excluding samples of high anomaly probabilities and training the model with the purified training set. Despite that the model is trained with a cleaner training set, the inevitably existing anomalies may still cause negative impact. STKD alleviates this by regularizing the model to respond similarly to a teacher model which has not been trained with noisy data. Experiments show that STKD consistently produces more robust performance with different levels of anomalies.