Koji Asahi works for NEC Corporation.

Posts

Optical Network Tomography over Live Production Network in Multi-Domain Environment

We report the first trial of network tomography over a live network in a multi-domain environ­ment. We visualize end-to-end optical powers along multiple routes across multiple domains solely from a commercial B00G transponder, enabling performance bottleneck localization, power and routing opti­mization, and lightpath provisioning.

Observing the Worst- and Best-Case Line-System Transmission Conditions in a C-Band Variable Spectral Load Scenario

We experimentally investigated variable spectral loading in an OMS, identifying performance under best and worst transmission conditions. Metrics and data visualization allowed correlation between channel configurations and OSNR variations, enabling the derivation of a simple spectrum allocation rule.

Toward Intelligent and Efficient Optical Networks: Performance Modeling, Co-existence, and Field Trials

Optical transmission networks require intelligent traffic adaptation and efficient spectrum usage. We present scalable machine learning (ML) methods for network performance modeling, andfield trials of distributed fiber sensing and classic optical network traffic coexistence.

First City-Scale Deployment of DASs with Satellite Imagery and AI for Live Telecom Infrastructure Management

We demonstrate real-time fiber risk assessment and dynamic network routing in live metro networks using deployed DASs, satellite imagery, and large-scale AI, achieving the first significantreduction in fiber failures in four years

Strain Accumulation Rate in Fiber Spools in the Presence of Ambient Acoustic Noise in Laser Phase Interferometry

We investigate the growth rate of phase power spectral density in fiber spools in the presence of ambient acoustic noise, observing a complex interplay between spool geometry, shielding effects, and phase cancellation at high acoustic frequencies.

Optical Line System Physical Digital Model Calibration using a Differential Algorithm

A differential algorithm is proposed to calibrate the physical digital model of an optical line system from scratch at the commissioning phase, using minimal measurements and maximizing signal and OSNR estimation accuracy.

1.2 Tb/s/l Real Time Mode Division Multiplexing Free Space Optical Communication with Commercial 400G Open and Disaggregated Transponders

We experimentally demonstrate real time mode division multiplexing free space optical communication with commercial 400G open and disaggregated transponders. As proof of concept,using HG00, HG10, and HG01 modes, we transmit 1.2 Tb/s/l (3´1l´400Gb/s) error free.

400-Gb/s mode division multiplexing-based bidirectional free space optical communication in real-time with commercial transponders

In this work, for the first time, we experimentally demonstrate mode division multiplexing-based bidirectional free space optical communication in real-time using commercial transponders. As proof of concept, via bidirectional pairs of Hermite-Gaussian modes (HG00, HG10, and HG01), using a Telecom Infra Project Phoenix compliant commercial 400G transponder, 400-Gb/s data signals (56-Gbaud, DP-16QAM) are bidirectionally transmitted error free, i.e., with less than 1e-2 pre-FEC BERs, over approximately 1-m of free space

Field Verification of Fault Localization with Integrated Physical-Parameter-Aware Methodology

We report the first field verification of fault localization in an optical line system (OLS) by integrating digital longitudinal monitoring and OLS calibration, highlighting changes in physical metrics and parameters. Use cases shown are degradation of a fiber span loss and optical amplifier noise figure.

First Field Demonstration of Hollow-Core Fibre Supporting Distributed Acoustic Sensing and DWDM Transmission

We demonstrate a method for measuring the backscatter coefficient of hollow-core fibre (HCF), and show the feasibility of distributed acoustic sensing (DAS) with simultaneous 9.6-Tb/s DWDM transmission over a 1.6-km field-deployed HCF cable.