LLM Assist (Large Language Model assist) refers to assistance or support provided by large language models (LLMs) like GPT-3 in various applications such as text generation, content summarization, language translation, and more. LLMs are designed to assist users by generating human-like text, answering questions, or performing specific tasks based on input instructions.

Posts

Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction

Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions. Our work addresses two key challenges in trajectory prediction, learning multimodal outputs, and better predictions by imposing constraints using driving knowledge. Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many. But the impact of those methods in learning diverse hypotheses is under-studied as such objectives highly depend on their initialization for diversity. As our first contribution, we propose a novel Divide-And-Conquer (DAC) approach that acts as a better initialization technique to WTA objective, resulting in diverse outputs without any spurious modes. Our second contribution is a novel trajectory prediction framework called ALAN that uses existing lane centerlines as anchors to provide trajectories constrained to the input lanes. Our framework provides multi-agent trajectory outputs in a forward pass by capturing interactions through hypercolumn descriptors and incorporating scene information in the form of rasterized images and per-agent lane anchors. Experiments on synthetic and real data show that the proposed DAC captures the data distribution better compare to other WTA family of objectives. Further, we show that our ALAN approach provides on par or better performance with SOTA methods evaluated on Nuscenes urban driving benchmark.

SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction

We propose advances that address two key challenges in future trajectory prediction: (i) multimodality in both training data and predictions and (ii) constant time inference regardless of number of agents. Existing trajectory predictions are fundamentally limited by lack of diversity in training data, which is difficult to acquire with sufficient coverage of possible modes. Our first contribution is an automatic method to simulate diverse trajectories in the top-view. It uses pre-existing datasets and maps as initialization, mines existing trajectories to represent realistic driving behaviors and uses a multi-agent vehicle dynamics simulator to generate diverse new trajectories that cover various modes and are consistent with scene layout constraints. Our second contribution is a novel method that generates diverse predictions while accounting for scene semantics and multi-agent interactions, with constant-time inference independent of the number of agents. We propose a convLSTM with novel state pooling operations and losses to predict scene-consistent states of multiple agents in a single forward pass, along with a CVAE for diversity. We validate our proposed multi-agent trajectory prediction approach by training and testing on the proposed simulated dataset and existing real datasets of traffic scenes. In both cases, our approach outperforms SOTA methods by a large margin, highlighting the benefits of both our diverse dataset simulation and constant-time diverse trajectory prediction methods.”

R2P2: A Reparameterized Pushforward Policy for Diverse, Precise Generative Path Forecasting

We propose a method to forecast a vehicle’s ego-motion as a distribution over spatiotemporal paths, conditioned on features (e.g., from LIDAR and images) embedded in an overhead map. The method learns a policy inducing a distribution over simulated trajectories that is both diverse (produces most paths likely under the data) and precise (mostly produces paths likely under the data). This balance is achieved through minimization of a symmetrized cross-entropy between the distribution and demonstration data. By viewing the simulated-outcome distribution as the pushforward of a simple distribution under a simulation operator, we obtain expressions for the cross-entropy metrics that can be efficiently evaluated and differentiated, enabling stochastic-gradient optimization. We propose concrete policy architectures for this model, discuss our evaluation metrics relative to previously-used metrics, and demonstrate the superiority of our method relative to state-of-the-art methods in both the KITTI dataset and a similar but novel and larger real-world dataset explicitly designed for the vehicle forecasting domain.