A LLM (Large Language Model) is an artificial intelligence model characterized by its vast size in terms of parameters and training data. These models are typically based on deep learning architectures, such as Transformers, and are trained on extensive datasets to learn the statistical relationships and patterns within natural language.

Posts

Multi-hop Evidence Pursuit Meets the Web: Team Papelo at FEVER 2024

Separating disinformation from fact on the web has long challenged both the search and the reasoning powers of humans. We show that the reasoning power of large language models (LLMs) and the retrieval power of modern search engines can be combined to automate this process and explainably verify claims. We integrate LLMs and search under a multi-hop evidence pursuit strategy. This strategy generates an initial question based on an input claim using a sequence to sequence model, searches and formulates an answer to the question, and iteratively generates follow-up questions to pursue the evidence that is missing using an LLM. We demonstrate our system on the FEVER 2024 (AVeriTeC) shared task. Compared to a strategy of generating all the questions at once, our method obtains .045 higher label accuracy and .155 higher AVeriTeC score (evaluating the adequacy of the evidence). Through ablations, we show the importance of various design choices, such as the question generation method, medium-sized context, reasoning with one document at a time, adding metadata, paraphrasing, reducing the problem to two classes, and reconsidering the final verdict. Our submitted system achieves .510 AVeriTeC score on the dev set and .477 AVeriTec score on the test set.

A Survey on Detection of LLMs-Generated Content

The burgeoning capabilities of advanced large language models (LLMs) such as ChatGPT have led to an increase in synthetic content generation with implications across a variety of sectors, including media, cybersecurity, public discourse, and education. As such, the ability to detect LLMs-generated content has become of paramount importance. We aim to provide a detailed overview of existing detection strategies and benchmarks, scrutinizing their differences and identifying key challenges and prospects in the field, advocating for more adaptable and robust models to enhance detection accuracy. We also posit the necessity for a multi-faceted approach to defend against various attacks to counter the rapidly advancing capabilities of LLMs. To the best of our knowledge, this work is the first comprehensive survey on the detection in the era of LLMs. We hope it will provide a broad understanding of the current landscape of LLMs-generated content detection, and we have maintained a website to consistently update the latest research as a guiding reference for researchers and practitioners.

Large Language Models Can Be Contextual Privacy Protection Learners

The proliferation of Large Language Models (LLMs) has driven considerable interest in fine-tuning them with domain-specific data to create specialized language models. Nevertheless, such domain-specific fine-tuning data often contains contextually sensitive personally identifiable information (PII). Direct fine-tuning LLMs on this data without privacy protection poses a risk of data leakage of sensitive PII during inference time. To address this challenge, we introduce Contextual Privacy Protection Language Models (CPPLM), a novel paradigm for fine-tuning LLMs that effectively injects domain-specific knowledge while safeguarding inference-time data privacy. Our work offers a theoretical analysis for model design and delves into various techniques such as corpus curation, penalty-based unlikelihood in training loss, and instruction-based tuning, etc. Extensive experiments across diverse datasets and scenarios demonstrate the effectiveness of our approaches. In particular, instruction tuning with both positive and negative examples, stands out as a promising method, effectively protecting private data while enhancing the model s knowledge. Our work underscores the potential for Large Language Models as robust contextual privacy protection learners.

Accelerating Distributed Machine Learning with an Efficient AllReduce Routing Strategy

We propose an efficient routing strategy for AllReduce transfers, which compromise of the dominant traffic in machine learning-centric datacenters, to achieve fast parameter synchronization in distributed machine learning, improving the average training time by 9%.

Introducing Our New Project: Time Series Language Model for Explainable AI

Our new project, Time Series Language Model for Explainable AI, represents a significant leap forward in the field of forecasting and explainable AI. By combining advanced forecasting techniques with explainable AI, we are paving the way for a future where data-driven insights are not only accurate but also comprehensible and actionable.

Agentic LLMs for AI Orchestration Project: Revolutionizing Complex Workflows

The development of Agentic LLMs for AI Orchestration represents a significant advancement in artificial intelligence. By seamlessly integrating computer vision, logic, and compute modules, our LLM is poised to revolutionize the way complex workflows are managed and executed. Supported by robust research and driven by innovative training methodologies, our agentic LLM sets a new standard in AI orchestration, offering unparalleled performance and adaptability.

AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving

Autonomous vehicle (AV) systems rely on robust perception models as a cornerstone of safety assurance. However, objects encountered on the road exhibit a long-tailed distribution, with rare or unseen categories posing challenges to a deployed perception model. This necessitates an expensive process of continuously curating and annotating data with significant human effort. We propose to leverage recent advances in vision-language and large language models to design an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios. This process operates iteratively, allowing for continuous self-improvement of the model. We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method’s superior performance at a reduced cost.

Self-Training Large Language Models for Improved Visual Program Synthesis With Visual Reinforcement

Visual program synthesis is a promising approach to exploit the reasoning abilities of large language models for compositional computer vision tasks. Previous work has used few-shot prompting with frozen LLMs to synthesize visual programs. Training an LLM to write better visual programs is an attractive prospect, but it is unclear how to accomplish this. No dataset of visual programs for training exists, and acquisition of a visual program dataset cannot be easily crowdsourced due to the need for expert annotators. To get around the lack of direct supervision, we explore improving the program synthesis abilities of an LLM using feedback from interactive experience. We propose a method where we exploit existing annotations for a vision-language task to improvise a coarse reward signal for that task, treat the LLM as a policy, and apply reinforced self-training to improve the visual program synthesis ability of the LLM for that task. We describe a series of experiments on object detection, compositional visual question answering, and image-text retrieval, and show that in each case, the self-trained LLM outperforms or performs on par with few-shot frozen LLMs that are an order of magnitude larger. Website: https://zaidkhan.me/ViReP/

Exploring Question Decomposition for Zero-Shot VQA

Visual question answering (VQA) has traditionally been treated as a single-step task where each question receives the same amount of effort, unlike natural human question-answering strategies. We explore a question decomposition strategy for VQA to overcome this limitation. We probe the ability of recently developed large vision-language models to use human-written decompositions and produce their own decompositions of visual questions, finding they are capable of learning both tasks from demonstrations alone. However, we show that naive application of model-written decompositions can hurt performance. We introduce a model-driven selective decomposition approach for second-guessing predictions and correcting errors, and validate its effectiveness on eight VQA tasks across three domains, showing consistent improvements in accuracy, including improvements of >20% on medical VQA datasets and boosting the zero-shot performance of BLIP-2 above chance on a VQA reformulation of the challenging Winoground task. Project Site: https://zaidkhan.me/decomposition-0shot-vqa/