Loong Fah Cheong works at National University of Singapore.

Posts

Degeneracy in Self-Calibration Revisited and a Deep Learning Solution for Uncalibrated SLAM

Self-calibration of camera intrinsics and radial distortion has a long history of research in the computer vision community. However, it remains rare to see real applications of such techniques to modern Simultaneous Localization And Mapping (SLAM) systems, especially in driving scenarios. In this paper, we revisit the geometric approach to this problem, and provide a theoretical proof that explicitly shows the ambiguity between radial distortion and scene depth when two-view geometry is used to self-calibrate the radial distortion. In view of such geometric degeneracy, we propose a learning approach that trains a convolutional neural network (CNN) on a large amount of synthetic data. We demonstrate the utility of our proposed method by applying it as a checkerboard-free calibration tool for SLAM, achieving comparable or superior performance to previous learning and hand-crafted method

Learning Structure-And-Motion-Aware Rolling Shutter Correction

An exact method of correcting the rolling shutter (RS) effect requires recovering the underlying geometry, i.e. the scene structures and the camera motions between scanlines or between views. However, the multiple-view geometry for RS cameras is much more complicated than its global shutter (GS) counterpart, with various degeneracies. In this paper, we first make a theoretical contribution by showing that RS two-view geometry is degenerate in the case of pure translational camera motion. In view of the complex RS geometry, we then propose a Convolutional Neural Network (CNN)-based method which learns the underlying geometry (camera motion and scene structure) from just a single RS image and perform RS image correction. We call our method structure-and-motion-aware RS correction because it reasons about the concealed motions between the scanlines as well as the scene structure. Our method learns from a large-scale dataset synthesized in a geometrically meaningful way where the RS effect is generated in a manner consistent with the camera motion and scene structure. In extensive experiments, our method achieves superior performance compared to other state-of-the-art methods for single image RS correction and subsequent Structure from Motion (SfM) applications.