Lu An Tang NEC Labs America

Lu-An Tang

Senior Researcher
Data Science and System Security

Posts

TSLA: Unified Time Series and Language Model

Real-world time series data often require analysis or interpretation from domain experts. Some tasks, like time series question answering, involve both time series and natural language questions, posing challenges for single-modality language models to understand their interaction. To this end, we present TSLA (Time Series Language Model), a framework designed to enhance the language model with the understanding of time series data for multi-modality tasks. TSLA comprises three key components. (1) Time Series Tokenizer learns how to represent time series data into discrete tokens, making it more manageable for language models. (2) Joint (Pre-)Training on task-agnostic time series and text data integrates time series tokens and text tokens to model the interplay between time series and language concepts. (3) Multi-task Instruction Tuning fine-tunes the pretrained TSLA for various downstream tasks relevant to user interests. For evaluation, we applied TSLA to time series data from human motions on four tasks: time series captioning, time series question answering, text-based time series synthesis, and text-based time series continuation. The results demonstrate TSLA’s effectiveness in handling multiple time series analysis tasks, pointing the way for future research endeavors.

Incident Diagnosing and Reporting System based on Retrieval Augmented Large Language Model

The Internet-of-Things (IoT) is widely used in many applications such as smart city, transportation, healthcare, and environment monitoring. A key task of IoT maintenance is to analyze the abnormal sensor records and generate incident report. Traditionally, domain experts engage in such labor intensive tasks. Recent advances in Large Language Model (LLM) have sparked interests in developing AI-based systems to automate these labor intensive processes. However, two critical problems hinder the effective application of LLM in IoTs: (1) LLM lacks background knowledge of deployed IoTs; and (2) the incidents are complex = events involving many sensors and components. LLM needs to understand the sensor relationships for accurate diagnosis. In this study, we propose a Retrieval Augmented language model based Incident Diagnosing and Reporting system (RAIDR) for IoT applications. RAIDR retrieves related system documents based on the incident features and leverages LLM to analyze anomalies, identify root causes, and automatically generate incident reports. The automated incident reporting process streamlines end users’ decision making for system maintenance and troubleshooting.

NEC Labs America Attends the 39th Annual AAAI Conference on Artificial Intelligence #AAAI25

Our NEC Lab America team attended the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25), in Philadelphia, Pennsylvania at the Pennsylvania Convention Center from February 25 to March 4, 2025. The purpose of the AAAI conference series was to promote research in Artificial Intelligence (AI) and foster scientific exchange between researchers, practitioners, scientists, students, and engineers across the entirety of AI and its affiliated disciplines. Our team presented technical papers, led special tracks, delivered talks on key topics, participated in workshops, conducted tutorials, and showcased research in poster sessions. The team greeted visitors at Booth #208 and was there Thursday through Saturday.

The WizARd and Apprentice: An Augmented Reality Expert Capture System

Learning to perform physical tasks is ubiquitous yet challenging without expert guidance. While Augmented Reality (AR) has been adopted to overlay instructions directly onto the physical context, the natural authoring of such content remains unexplored. To address this, we developed WizARd and Apprentice, an AR expert capture system for training novices using an AR headset. WizARd and Apprentice tracks and records expert demonstrations and moving objects, leveraging the natural synchronization of speech and action to identify key steps and automatically create spatial markers.

PAIL: Performance based Adversarial Imitation Learning Engine for Carbon Neutral Optimization

Achieving carbon neutrality within industrial operations has become increasingly imperative for sustainable development. It is both a significant challenge and a key opportunity for operational optimization in industry 4.0. In recent years, Deep Reinforcement Learning (DRL) based methods offer promising enhancements for sequential optimization processes and can be used for reducing car-bon emissions. However, existing DRL methods need a pre-defined reward function to assess the impact of each action on the final sustainable development goals (SDG). In many real applications, such a reward function cannot be given in advance. To address the problem, this study proposes a Performance based Adversarial Imitation Learning (PAIL) engine. It is a novel method to acquire optimal operational policies for carbon neutrality without any pre-defined action rewards. Specifically, PAIL employs a Transformer-based policy generator to encode historical information and predict fol-lowing actions within a multi-dimensional space. The entire action sequence will be iteratively updated by an environmental simulator. Then PAIL uses a discriminator to minimize the discrepancy be-tween generated sequences and real-world samples of high SDG. In parallel, a Q-learning framework based performance estimator is de-signed to estimate the impact of each action on SDG. Based on these estimations, PAIL refines generated policies with the rewards from both discriminator and performance estimator. PAIL is evaluated on multiple real-world application cases and datasets. The experiment results demonstrate the effectiveness of PAIL comparing to other state-of-the-art baselines. In addition, PAIL offers meaningful interpretability for the optimization in carbon neutrality.

Advancing Sustainability in Global Supply Chains through Agent-based Simulation

In today’s world, with its complex global supply chains, the difficulties and uncertainties we face offer both challenges and opportunities for making things better, especially in terms of efficiency and sustainability. These challenges grow due to unpredictable events, such as natural disasters, unexpected incidents, and unusual business practices, pushing us towards more advanced modeling methods that focus on reducing risks and enhancing sustainability. In this paper, we present a new agent-based simulation approach that goes beyond the usual limits of supply chain simulations by incorporating sustainability directly into supply chain operations using reinforcement learning (RL) algorithms. We introduce MOGI, a sustainable supply chain simulation system that takes carbon emissions into account in its main operations. Additionally, we examine how effective a multi-agent RL strategy is in dealing with the complex and uncertain nature of supply chains that span multiple levels. By comparing this strategy with traditional heuristic methods, our study looks at how well single versus multiple RL agents can manage risks and improve sustainability in both the beginning and end parts of the supply chain. The results of our experiments show that strategies based on RL are much better than traditional methods at managing risks, making profits, and achieving sustainability goals.

Temporal Graph-Based Incident Analysis System for Internet of Things (ECML)

Internet-of-things (IoTs) deploy a massive number of sensors to monitor the system and environment. Anomaly detection on sensor data is an important task for IoT maintenance and operation. In real applications, the occurrence of a system-level incident usually involves hundreds of abnormal sensors, making it impractical for manual verification. The users require an efficient and effective tool to conduct incident analysis and provide critical information such as: (1) identifying the parts that suffered most damages and (2) finding out the ones that cause the incident. Unfortunately, existing methods are inadequate to fulfill these requirements because of the complex sensor relationship and latent anomaly influences in IoTs. To bridge the gap, we design and develop a Temporal Graph based Incident Analysis System (TGIAS) to help users’ diagnosis and reaction on reported anomalies. TGIAS trains a temporal graph to represent the anomaly relationship and computes severity ranking and causality score for each sensor. TGIAS provides the list of top k serious sensors and root-causes as output and illustrates the evidence on a graphical view. The system does not need any incident data for training and delivers high accurate analysis results in online time. TGIAS is equipped with a user-friendly interface, making it an effective tool for a broad range of IoTs.

Temporal Graph based Incident Analysis System for Internet of Things

Internet-of-things (IoTs) deploy a massive number of sensors to monitor the system and environment. Anomaly detection on sensor data is an important task for IoT maintenance and operation. In real applications, the occurrence of a system-level incident usually involves hundreds of abnormal sensors, making it impractical for manual verification. The users require an efficient and effective tool to conduct incident analysis and provide critical information such as: (1) identifying the parts that suffered most damages and (2) finding out the ones that cause the incident. Unfortunately, existing methods are inadequate to fulfill these requirements because of the complex sensor relationship and latent anomaly influences in IoTs. To bridge the gap, we design and develop a Temporal Graph based Incident Analysis System (TGIAS) to help users’ diagnosis and reaction on reported anomalies. TGIAS trains a temporal graph to represent the anomaly relationship and computes severity ranking and causality score for each sensor. TGIAS provides the list of top k serious sensors and root-causes as output and illustrates the detailed evidence on a graphical view. The system does not need any incident data for training and delivers high accurate analysis results in online time. TGIAS is equipped with a user-friendly interface, making it an effective tool for a broad range of IoTs.

State-Aware Anomaly Detection for Massive Sensor Data in Internet of Things

With the escalating prevalence of Internet of Things (IoTs) in critical infrastructure, the requirement for efficient and effective anomaly detection solution becomes increasingly important. Unfortunately, most prior research works have largely overlooked to adapt detection criteria for different operational states, thereby rendering them inadequate when confronted with diverse and complex work states of IoTs. In this study, we address the challenges of IoT anomaly detection across various work states by introducing a novel model called Hybrid State Encoder-Decoder (HSED). HSED employs a two-step approach, beginning with identification and construction of a hybrid state for Key Performance Indicator (KPI) sensors based on their state attributes, followed by the detection of abnormal or failure events utilizing high-dimensional sensor data. Through the evaluation on real-world datasets, we demonstrate the superiority of HSED over state-of-the-art anomaly detection models. HSED can significantly enhance the efficiency, adaptability and reliability of IoTs and avoid potential risks of economic losses by IoT failures.

Explainable Anomaly Detection System for Categorical Sensor Data in Internet of Things

Internet of things (IoT) applications deploy massive number of sensors to monitor the system and environment. Anomaly detection on streaming sensor data is an important task for IoT maintenance and operation. However, there are two major challenges for anomaly detection in real IoT applications: (1) many sensors report categorical values rather than numerical readings, (2) the end users may not understand the detection results, they require additional knowledge and explanations to make decision and take action. Unfortunately, most existing solutions cannot satisfy such requirements. To bridge the gap, we design and develop an eXplainable Anomaly Detection System (XADS) for categorical sensor data. XADS trains models from historical normal data and conducts online monitoring. XADS detects the anomalies in an explainable way: the system not only reports anomalies’ time periods, types, and detailed information, but also provides explanations on why they are abnormal, and what the normal data look like. Such information significantly helps the decision making for users. Moreover, XADS requires limited parameter setting in advance, yields high accuracy on detection results and comes with a user-friendly interface, making it an efficient and effective tool to monitor a wide variety of IoT applications.