Media Analytics

Read our publications from our Media Analytics team who are overcoming fundamental challenges in computer vision and are addressing critical needs in mobility, security, safety and socially relevant AI. Our team solves fundamental challenges in computer vision, with a focus on understanding and interaction in 3D scenes, representation learning in visual and multimodal data, learning across domains and tasks, as well as responsible AI. Our technological breakthroughs contribute to socially-relevant solutions that address key enterprise needs in mobility, safety and smart spaces.

Posts

Instantaneous Perception of Moving Objects in 3D

The perception of 3D motion of surrounding traffic participants is crucial for driving safety. While existing works primarily focus on general large motions, we contend that the instantaneous detection and quantification of subtle motions is equally important as they indicate the nuances in driving behavior that may be safety critical, such as behaviors near a stop sign of parking positions. We delve into this under-explored task, examining its unique challenges and developing our solution, accompanied by a carefully designed benchmark. Specifically, due to the lack of correspondences between consecutive frames of sparse Lidar point clouds, static objects might appear to be moving – the so-called swimming effect. This intertwines with the true object motion, thereby posing ambiguity in accurate estimation, especially for subtle motions. To address this, we propose to leverage local occupancy completion of object point clouds to densify the shape cue, and mitigate the impact of swimming artifacts. The occupancy completion is learned in an end-to-end fashion together with the detection of moving objects and the estimation of their motion, instantaneously as soon as objects start to move. Extensive experiments demonstrate superior performance compared to standard 3D motion estimation approaches, particularly highlighting our method’s specialized treatment of subtle motions.

LidaRF: Delving into Lidar for Neural Radiance Field on Street Scenes

Photorealistic simulation plays a crucial role in applications such as autonomous driving, where advances in neural radiance fields (NeRFs) may allow better scalability through the automatic creation of digital 3D assets. However, reconstruction quality suffers on street scenes due to largely collinear camera motions and sparser samplings at higher speeds. On the other hand, the application often demands rendering from camera views that deviate from the inputs to accurately simulate behaviors like lane changes. In this paper, we propose several insights that allow a better utilization of Lidar data to improve NeRF quality on street scenes. First, our framework learns a geometric scene representation from Lidar, which are fused with the implicit grid-based representation for radiance decoding, thereby supplying strongergeometric information offered by explicit point cloud. Second, we put forth a robust occlusion-aware depth supervision scheme, which allows utilizing densified Lidar points by accumulation. Third, we generate augmented training views from Lidar points for further improvement. Our insights translate to largely improved novel view synthesis under real driving scenes.

Improving the Efficiency-Accuracy Trade-off of DETR-Style Models in Practice

This report aims to provide a comprehensive view on the inference efficiency of DETR-style detection models. We provide the effect of the basic efficiency techniques and identify the factors that are easily applicable yet effectively improve the efficiency-accuracy trade-off. Specifically, we explore the effect of input resolution, multi-scale feature enhancement, and backbone pre-training. Our experiments support that 1) improving the detection accuracy for smaller objects while minimizing the increase in inference cost is a good strategy to achieve a better trade-off between accuracy and efficiency. 2) Multi-scale feature enhancement can be lightened with marginal accuracy loss and 3) improved backbone pre-training can further enhance the trade-off.

Generating Enhanced Negatives for Training Language-Based Object Detectors

The recent progress in language-based open-vocabulary object detection can be largely attributed to finding better ways of leveraging large-scale data with free-form text annotations. Training such models with a discriminative objective function has proven successful, but requires good positive and negative samples.

Long-HOT: A Modular Hierarchical Approach for Long-Horizon Object Transport

We aim to address key challenges in long-horizon embodied exploration and navigation by proposing a long-horizon object transport task called Long-HOT and a novel modular framework for temporally extended navigation. Agents in Long-HOT need to efficiently find and pick up target objects that are scattered in the environment, carry them to a goal location with load constraints, and optionally have access to a container. We propose a modular topological graph-based transport policy (HTP) that explores efficiently with the help of weighted frontiers. Our hierarchical approach uses a combination of motion planning algorithms to reach point goals within explored locations and object navigation policies for moving towards semantic targets at unknown locations. Experiments on both our proposed Habitat transport task and on MultiOn benchmarks show that our method outperforms baselines and prior works. Further, we analyze the agent’s behavior for the usage of the container and demonstrate meaningful generalization to harder transport scenes with training only on simpler versions of the task.

Efficient Transformer Encoders for Mask2Former-style Models

Vision transformer based models bring significant improvements for image segmentation tasks. Although these architectures offer powerful capabilities irrespective of specific segmentation tasks, their use of computational resources can be taxing on deployed devices. One way to overcome this challenge is by adapting the computation level to the specific needs of the input image rather than the current one size-fits-all approach. To this end, we introduce ECO-M2F or EffiCient TransfOrmer Encoders for Mask2Former-style models. Noting that the encoder module of M2F-style models incur high resource-intensive computations, ECO-M2F provides a strategy to self-select the number of hidden layers in the encoder, conditioned on the input image. To enable this self-selection ability for providing a balance between performance and computational efficiency, we present a three-step recipe. The first step is to train the parent architecture to enable early exiting from the encoder. The second step is to create a derived dataset of the ideal number of encoder layers required for each training example. The third step is to use the aforementioned derived dataset to train a gating network that predicts the number of encoder layers to be used, conditioned on input image. Additionally, to change the computational-accuracy trade off, only steps two and three need to be repeated which significantly reduces retraining time. Experiments on the public datasets show that the proposed approach reduces expected encoder computational cost while maintaining performance, adapts to various user compute resources, is flexible in architecture configurations, and can be extended beyond the segmentation task to object detection.

Progressive Token Length Scaling in Transformer Encoders for Efficient Universal Segmentation

A powerful architecture for universal segmentation relies on transformers that encode multi-scale image features and decode object queries into mask predictions. With efficiency being a high priority for scaling such models, we observed that the state-of-the-art method Mask2Former uses >50% of its compute only on the transformer encoder. This is due to the retention of a full-length token-level representation of all backbone feature scales at each encoder layer. With this observation, we propose a strategy termed PROgressive Token Length SCALing for Efficient transformer encoders (PRO-SCALE) that can be plugged-in to the Mask2Former style segmentation architectures to significantly reduce the computational cost. The underlying principle of PRO-SCALE is: progressively scale the length of the tokens with the layers of the encoder. This allows PRO-SCALE to reduce computations by a large margin with minimal sacrifice in performance (?52% GFLOPs reduction with no drop in performance on COCO dataset). We validate our frame work on multiple public benchmarks.

Improving Language-Based Object Detection by Explicit Generation of Negative Examples

The recent progress in language-based object detection with an open-vocabulary can be largely attributed to finding better ways of leveraging large-scale data with free-form text annotations. Training from image captions with grounded bounding boxes (ground truth or pseudo-labeled) enable the models to reason over an open-vocabulary and understand object descriptions in free-form text. In this work, we investigate the role of negative captions for training such language-based object detectors. While the fixed label space in standard object detection datasets clearly defines the set of negative classes, the free-form text used for language-based detection makes the space of potential negatives virtually infinite in size. We propose to leverage external knowledge bases and large-language-models to automatically generate contradictions for each caption in the training dataset. Furthermore, we leverage image-generate tools to create corresponding negative images to the contradicting caption. Such automatically generated data constitute hard negative examples for language-based detection and improve the model when trained from. Our experiments demonstrate the benefits of the automatically generated training data on two complex benchmarks.

Exploring Question Decomposition for Zero-Shot VQA

Visual question answering (VQA) has traditionally been treated as a single-step task where each question receives the same amount of effort, unlike natural human question-answering strategies. We explore a question decomposition strategy for VQA to overcome this limitation. We probe the ability of recently developed large vision-language models to use human-written decompositions and produce their own decompositions of visual questions, finding they are capable of learning both tasks from demonstrations alone. However, we show that naive application of model-written decompositions can hurt performance. We introduce a model-driven selective decomposition approach for second-guessing predictions and correcting errors, and validate its effectiveness on eight VQA tasks across three domains, showing consistent improvements in accuracy, including improvements of >20% on medical VQA datasets and boosting the zero-shot performance of BLIP-2 above chance on a VQA reformulation of the challenging Winoground task. Project Site: https://zaidkhan.me/decomposition-0shot-vqa/

DP-Mix: Mixup-based Data Augmentation for Differentially Private Learning

Data augmentation techniques, such as image transformations and combinations, are highly effective at improving the generalization of computer vision models, especially when training data is limited. However, such techniques are fundamentally incompatible with differentially private learning approaches, due to the latter’s built-in assumption that each training image’s contribution to the learned model is bounded. In this paper, we investigate why naive applications of multi-sample data augmentation techniques, such as mixup, fail to achieve good performance and propose two novel data augmentation techniques specifically designed for the constraints of differentially private learning. Our first technique, DP-Mix_Self, achieves SoTA classification performance across a range of datasets and settings by performing mixup on self-augmented data. Our second technique, DP-Mix_Diff, further improves performance by incorporating synthetic data from a pre-trained diffusion model into the mixup process. We open-source the code at https://github.com/wenxuan-Bao/DP-Mix.