Martin Min NEC Labs America

Martin Renqiang Min

Department Head

Machine Learning

Posts

S3VAE: Self-Supervised Sequential VAE for Representation Disentanglement and Data Generation

We propose a sequential variational autoencoder to learn disentangled representations of sequential data (e.g., videos and audios) under self-supervision. Specifically, we exploit the benefits of some readily accessible supervision signals from input data itself or some off-the-shelf functional models and accordingly design auxiliary tasks for our model to utilize these signals. With the supervision of the signals, our model can easily disentangle the representation of an input sequence into static factors and dynamic factors (i.e., time-invariant and time-varying parts). Comprehensive experiments across videos and audios verify the effectiveness of our model on representation disentanglement and generation of sequential data, and demonstrate that, our model with self-supervision performs comparable to, if not better than, the fully-supervised model with ground truth labels, and outperforms state-of-the-art unsupervised models by a large margin.

Adversarial Cooperative Imitation Learning for Dynamic Treatment Regimes

Recent developments in discovering dynamic treatment regimes (DTRs) have heightened the importance of deep reinforcement learning (DRL) which are used to recover the doctor’s treatment policies. However, existing DRL-based methods expose the following limitations: 1) supervised methods based on behavior cloning suffer from compounding errors, 2) the self-defined reward signals in reinforcement learning models are either too sparse or need clinical guidance, 3) only positive trajectories (e.g. survived patients) are considered in current imitation learning models, with negative trajectories (e.g. deceased patients) been largely ignored, which are examples of what not to do and could help the learned policy avoid repeating mistakes. To address these limitations, in this paper, we propose the adversarial cooperative imitation learning model, ACIL, to deduce the optimal dynamic treatment regimes that mimics the positive trajectories while differs from the negative trajectories. Specifically, two discriminators are used to help achieve this goal: an adversarial discriminator is designed to minimize the discrepancies between the trajectories generated from the policy and the positive trajectories, and a cooperative discriminator is used to distinguish the negative trajectories from the positive and generated trajectories. The reward signals from the discriminators are utilized to refine the policy for dynamic treatment regimes. Experiments on the publicly real-world medical data demonstrate that ACIL improves the likelihood of patient survival and provides better dynamic treatment regimes with the exploitation of information from both positive and negative trajectories.

On Novel Object Recognition: A Unified Framework for Discriminability and Adaptability

The rich and accessible labeled data fueled the revolutionary successes of deep learning in object recognition. However, recognizing objects of novel classes with limited supervision information provided, i.e., Novel Object Recognition (NOR), remains a challenging task. We identify in this paper two key factors for the success of NOR that previous approaches fail to simultaneously guarantee. The first is producing discriminative feature representations for images of novel classes, and the second is generating a flexible classifier readily adapted to novel classes provided with limited supervision signals. To secure both key factors, we propose a framework which decouples a deep classification model into a feature extraction module and a classification module. We learn the former to ensure feature discriminability with a standard multi-class classification task by fully utilizing the competing information among all classes within a training set, and learn the latter to secure adaptability by training a meta-learner network which generates classifier weights whenever provided with minimal supervision information of target classes. Extensive experiments on common benchmark datasets in the settings of both zero-shot and few-shot learning demonstrate our method achieves state-of-the-art performance.

Rethinking Zero-Shot Learning: A Conditional Visual Classification Perspective

Zero-shot learning (ZSL) aims to recognize instances of unseen classes solely based on the semantic descriptions of the classes. Existing algorithms usually formulate it as a semantic-visual correspondence problem, by learning mappings from one feature space to the other. Despite being reasonable, previous approaches essentially discard the highly precious discriminative power of visual features in an implicit way, and thus produce undesirable results. We instead reformulate ZSL as a conditioned visual classification problem, i.e., classifying visual features based on the classifiers learned from the semantic descriptions. With this reformulation, we develop algorithms targeting various ZSL settings: For the conventional setting, we propose to train a deep neural network that directly generates visual feature classifiers from the semantic attributes with an episode-based training scheme; For the generalized setting, we concatenate the learned highly discriminative classifiers for seen classes and the generated classifiers for unseen classes to classify visual features of all classes; For the transductive setting, we exploit unlabeled data to effectively calibrate the classifier generator using a novel learning-without-forgetting self-training mechanism and guide the process by a robust generalized cross-entropy loss. Extensive experiments show that our proposed algorithms significantly outperform state-of-the-art methods by large margins on most benchmark datasets in all the ZSL settings.

Learning K-way D-dimensional Discrete Embedding for Hierarchical Data Visualization and Retrieval

Traditional embedding approaches associate a real-valued embedding vector with each symbol or data point, which is equivalent to applying a linear transformation to “one-hot” encoding of discrete symbols or data objects. Despite simplicity, these methods generate storage-inefficient representations and fail to effectively encode the internal semantic structure of data, especially when the number of symbols or data points and the dimensionality of the real-valued embedding vectors are large. In this paper, we propose a regularized autoencoder framework to learn compact Hierarchical K-way D-dimensional (HKD) discrete embedding of symbols or data points, aiming at capturing essential semantic structures of data. Experimental results on synthetic and real-world datasets show that our proposed HKD embedding can effectively reveal the semantic structure of data via hierarchical data visualization and greatly reduce the search space of nearest neighbor retrieval while preserving high accuracy.

Conditional GAN with Discriminative Filter Generation for Text-to-Video Synthesis

Developing conditional generative models for text-to-video synthesis is an extremely challenging yet an important topic of research in machine learning. In this work, we address this problem by introducing Text-Filter conditioning Generative Adversarial Network (TFGAN), a conditional GAN model with a novel multi-scale text-conditioning scheme that improves text-video associations. By combining the proposed conditioning scheme with a deep GAN architecture, TFGAN generates high quality videos from text on challenging real-world video datasets. In addition, we construct a synthetic dataset of text-conditioned moving shapes to systematically evaluate our conditioning scheme. Extensive experiments demonstrate that TFGAN significantly outperforms existing approaches, and can also generate videos of novel categories not seen during training.

A Deep Spatio-Temporal Fuzzy Neural Network for Passenger Demand Prediction

In spite of its importance, passenger demand prediction is a highly challenging problem, because the demand is simultaneously influenced by the complex interactions among many spatial and temporal factors and other external factors such as weather. To address this problem, we propose a Spatio-TEmporal Fuzzy neural Network (STEF-Net) to accurately predict passenger demands incorporating the complex interactions of all known important factors. We design an end-to-end learning framework with different neural networks modeling different factors. Specifically, we propose to capture spatio-temporal feature interactions via a convolutional long short-term memory network and model external factors via a fuzzy neural network that handles data uncertainty significantly better than deterministic methods. To keep the temporal relations when fusing two networks and emphasize discriminative spatio-temporal feature interactions, we employ a novel feature fusion method with a convolution operation and an attention layer. As far as we know, our work is the first to fuse a deep recurrent neural network and a fuzzy neural network to model complex spatial-temporal feature interactions with additional uncertain input features for predictive learning. Experiments on a large-scale real-world dataset show that our model achieves more than 10% improvement over the state-of-the-art approaches.

Optimal Transport Classifier: Defending Against Adversarial Attacks by Regularized Deep Embedding

Recent studies have demonstrated the vulnerability of deep convolutional neural networks against adversarial examples. Inspired by the observation that the intrinsic dimension of image data is much smaller than its pixel space dimension and the vulnerability of neural networks grows with the input dimension, we propose to embed high-dimensional input images into a low-dimensional space to perform classification. However, arbitrarily projecting the input images to a low-dimensional space without regularization will not improve the robustness of deep neural networks. Leveraging optimal transport theory, we propose a new framework, Optimal Transport Classifier (OT-Classifier), and derive an objective that minimizes the discrepancy between the distribution of the true label and the distribution of the OT-Classifier output. Experimental results on several benchmark datasets show that, our proposed framework achieves state-of-the-art performance against strong adversarial attack methods.

Learning Context-Sensitive Convolutional Filters for Text Processing

Convolutional neural networks (CNNs) have recently emerged as a popular building block for natural language processing (NLP). Despite their success, most existing CNN models employed in NLP share the same learned (and static) set of filters for all input sentences. In this paper, we consider an approach of using a small meta network to learn context-sensitive convolutional filters for text processing. The role of meta network is to abstract the contextual information of a sentence or document into a set of input-sensitive filters. We further generalize this framework to model sentence pairs, where a bidirectional filter generation mechanism is introduced to encapsulate co-dependent sentence representations. In our benchmarks on four different tasks, including ontology classification, sentiment analysis, answer sentence selection, and paraphrase identification, our proposed model, a modified CNN with context-sensitive filters, consistently outperforms the standard CNN and attention-based CNN baselines. By visualizing the learned context-sensitive filters, we further validate and rationalize the effectiveness of proposed framework.

Parametric t-Distributed Stochastic Exemplar-centered Embedding

Parametric embedding methods such as parametric t-distributed Stochastic Neighbor Embedding (pt-SNE) enables out-of-sample data visualization without further computationally expensive optimization or approximation. However, pt-SNE favors small mini-batches to train a deep neural network but large mini-batches to approximate its cost function involving all pairwise data point comparisons, and thus has difficulty in finding a balance. To resolve the conflicts, we present parametric t-distributed stochastic exemplar-centered embedding. Our strategy learns embedding parameters by comparing training data only with precomputed exemplars to indirectly preserve local neighborhoods, resulting in a cost function with significantly reduced computational and memory complexity. Moreover, we propose a shallow embedding network with high-order feature interactions for data visualization, which is much easier to tune but produces comparable performance in contrast to a deep feedforward neural network employed by pt-SNE. We empirically demonstrate, using several benchmark datasets, that our proposed method significantly outperforms pt-SNE in terms of robustness, visual effects, and quantitative evaluations.