Masoud Farkai NEC Labs America

Masoud Faraki


Media Analytics


Domain Generalization Guided by Gradient Signal to Noise Ratio of Parameters

Overfitting to the source domain is a common issue in gradient-based training of deep neural networks. To compensate for the over-parameterized models, numerous regularization techniques have been introduced such as those based on dropout. While these methods achieve significant improvements on classical benchmarks such as ImageNet, their performance diminishes with the introduction of domain shift in the test set i.e. when the unseen data comes from a significantly different distribution. In this paper, we move away from the classical approach of Bernoulli sampled dropout mask construction and propose to base the selection on gradient-signal-to-noise ratio (GSNR) of network’s parameters. Specifically, at each training step, parameters with high GSNR will be discarded. Furthermore, we alleviate the burden of manually searching for the optimal dropout ratio by leveraging a meta-learning approach. We evaluate our method on standard domain generalization benchmarks and achieve competitive results on classification and face anti-spoofing problems.

Split to Learn: Gradient Split for Multi-Task Human Image Analysis

This paper presents an approach to train a unified deep network that simultaneously solves multiple human-related tasks. A multi-task framework is favorable for sharing information across tasks under restricted computational resources. However, tasks not only share information but may also compete for resources and conflict with each other, making the optimization of shared parameters difficult and leading to suboptimal performance. We propose a simple but effective training scheme called GradSplit that alleviates this issue by utilizing asymmetric inter-task relations. Specifically, at each convolution module, it splits features into T groups for T tasks and trains each group only using the gradient back-propagated from the task losses with which it does not have conflicts. During training, we apply GradSplit to a series of convolution modules. As a result, each module is trained to generate a set of task-specific features using the shared features from the previous module. This enables a network to use complementary information across tasks while circumventing gradient conflicts. Experimental results show that GradSplit achieves a better accuracy-efficiency trade-off than existing methods. It minimizes accuracy drop caused by task conflicts while significantly saving compute resources in terms of both FLOPs and memory at inference. We further show that GradSplit achieves higher cross-dataset accuracy compared to single-task and other multi-task networks.

Learning Semantic Segmentation from Multiple Datasets with Label Shifts

While it is desirable to train segmentation models on an aggregation of multiple datasets, a major challenge is that the label space of each dataset may be in conflict with one another. To tackle this challenge, we propose UniSeg, an effective and model-agnostic approach to automatically train segmentation models across multiple datasets with heterogeneous label spaces, without requiring any manual relabeling efforts. Specifically, we introduce two new ideas that account for conflicting and co-occurring labels to achieve better generalization performance in unseen domains. First, we identify a gradient conflict in training incurred by mismatched label spaces and propose a class-independent binary cross-entropy loss to alleviate such label conflicts. Second, we propose a loss function that considers class-relationships across datasets for a better multi-dataset training scheme. Extensive quantitative and qualitative analyses on road-scene datasets show that UniSeg improves over multi-dataset baselines, especially on unseen datasets, e.g., achieving more than 8%p gain in IoU on KITTI. Furthermore, UniSeg achieves 39.4% IoU on the WildDash2 public benchmark, making it one of the strongest submissions in the zero-shot setting. Our project page is available at

Controllable Dynamic Multi-Task Architectures

Multi-task learning commonly encounters competition for resources among tasks, specifically when model capacity is limited. This challenge motivates models which allow control over the relative importance of tasks and total compute cost during inference time. In this work, we propose such a controllable multi-task network that dynamically adjusts its architecture and weights to match the desired task preference as well as the resource constraints. In contrast to the existing dynamic multi-task approaches that adjust only the weights within a fixed architecture, our approach affords the flexibility to dynamically control the total computational cost and match the user-preferred task importance better. We propose a disentangled training of two hyper networks, by exploiting task affinity and a novel branching regularized loss, to take input preferences and accordingly predict tree-structured models with adapted weights. Experiments on three multi-task benchmarks, namely PASCAL-Context, NYU-v2, and CIFAR-100, show the efficacy of our approach. Project page is available at

Learning to Learn across Diverse Data Biases in Deep Face Recognition

Convolutional Neural Networks have achieved remarkable success in face recognition, in part due to the abundant availability of data. However, the data used for training CNNs is often imbalanced. Prior works largely focus on the long-tailed nature of face datasets in data volume per identity or focus on single bias variation. In this paper, we show that many bias variations such as ethnicity, head pose, occlusion and blur can jointly affect the accuracy significantly. We propose a sample level weighting approach termed Multi-variation Cosine Margin (MvCoM), to simultaneously consider the multiple variation factors, which orthogonally enhances the face recognition losses to incorporate the importance of training samples. Further, we leverage a learning to learn approach, guided by a held-out meta learning set and use an additive modeling to predict the MvCoM. Extensive experiments on challenging face recognition benchmarks demonstrate the advantages of our method in jointly handling imbalances due to multiple variations.

On Generalizing Beyond Domains in Cross-Domain Continual Learning

Humans have the ability to accumulate knowledge of new tasks in varying conditions, but deep neural networks of-ten suffer from catastrophic forgetting of previously learned knowledge after learning a new task. Many recent methods focus on preventing catastrophic forgetting under the assumption of train and test data following similar distributions. In this work, we consider a more realistic scenario of continual learning under domain shifts where the model must generalize its inference to an unseen domain. To this end, we encourage learning semantically meaningful features by equipping the classifier with class similarity metrics as learning parameters which are obtained through Mahalanobis similarity computations. Learning of the backbone representation along with these extra parameters is done seamlessly in an end-to-end manner. In addition, we propose an approach based on the exponential moving average of the parameters for better knowledge distillation. We demonstrate that, to a great extent, existing continual learning algorithms fail to handle the forgetting issue under multiple distributions, while our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.

Cross-Domain Similarity Learning for Face Recognition in Unseen Domains

Face recognition models trained under the assumption of identical training and test distributions often suffer from poor generalization when faced with unknown variations, such as a novel ethnicity or unpredictable individual make-ups during test time. In this paper, we introduce a novel cross-domain metric learning loss, which we dub Cross-Domain Triplet (CDT) loss, to improve face recognition in unseen domains. The CDT loss encourages learning semantically meaningful features by enforcing compact feature clusters of identities from one domain, where the compactness is measured by underlying similarity metrics that belong to another training domain with different statistics. Intuitively, it discriminatively correlates explicit metrics derived from one domain, with triplet samples from another domain in a unified loss function to be minimized within a network, which leads to better alignment of the training domains. The network parameters are further enforced to learn generalized features under domain shift, in a model-agnostic learning pipeline. Unlike the recent work of Meta Face Recognition [18], our method does not require careful hard-pair sample mining and filtering strategy during training. Extensive experiments on various face recognition benchmarks show the superiority of our method in handling variations, compared to baseline and the state-of-the-art methods.

Voting Based Approaches For Differentially Private Federated Learning

Differentially Private Federated Learning (DPFL) is an emerging field with many applications. Gradient averaging-based DPFL methods require costly communication rounds and hardly work with large capacity models due to the explicit dimension dependence in its added noise. In this work, inspired by knowledge transfer non federated privacy learning from Papernot et al.(2017, 2018), we design two new DPFL schemes, by voting among the data labels returned from each local model, instead of averaging the gradients, which avoids the dimension dependence and significantly reduces the communication cost. Theoretically, by applying secure multi party computation, we could exponentially amplify the (data dependent) privacy guarantees when the margin of the voting scores are large. Extensive experiments show that our approaches significantly improve the privacy utility trade off over the state of the arts in DPFL.