Microservices is a software architecture and development approach where a complex application is broken down into smaller, independent, and loosely coupled services that communicate with each other through well-defined APIs (Application Programming Interfaces). Each microservice focuses on a specific, narrowly defined functionality or business capability. These services are developed, deployed, and managed independently, allowing for greater flexibility, scalability, and maintainability of the overall application.


LARA: Latency-Aware Resource Allocator for Stream Processing Applications

One of the key metrics of interest for stream processing applications is “latency”, which indicates the total time it takes for the application to process and generate insights from streaming input data. For mission-critical video analytics applications like surveillance and monitoring, it is of paramount importance to report an incident as soon as it occurs so that necessary actions can be taken right away. Stream processing applications are typically developed as a chain of microservices and are deployed on container orchestration platforms like Kubernetes. Allocation of system resources like “cpu” and “memory” to individual application microservices has direct impact on “latency”. Kubernetes does provide ways to allocate these resources e.g. through fixed resource allocation or through vertical pod autoscaler (VPA), however there is no straightforward way in Kubernetes to prioritize “latency” for an end-to end application pipeline. In this paper, we present LARA, which is specifically designed to improve “latency” of stream processing application pipelines. LARA uses a regression-based technique for resource allocation to individual microservices. We implement four real-world video analytics application pipelines i.e. license plate recognition, face recognition, human attributes detection and pose detection, and show that compared to fixed allocation, LARA is able to reduce latency by up to ? 2.8X and is consistently better than VPA. While reducing latency, LARA is also able to deliver over 2X throughput compared to fixed allocation and is almost always better than VPA.

Content-aware auto-scaling of stream processing applications on container orchestration platforms

Modern applications are designed as an interacting set of microservices, and these applications are typically deployed on container orchestration platforms like Kubernetes. Several attractive features in Kubernetes make it a popular choice for deploying applications, and automatic scaling is one such feature. The default horizontal scaling technique in Kubernetes is the Horizontal Pod Autoscaler (HPA). It scales each microservice independently while ignoring the interactions among the microservices in an application. In this paper, we show that ignoring such interactions by HPA leads to inefficient scaling, and the optimal scaling of different microservices in the application varies as the stream content changes. To automatically adapt to variations in stream content, we present a novel system called DataX AutoScaler that leverages knowledge of the entire stream processing application pipeline to efficiently auto-scale different microservices by taking into account their complex interactions. Through experiments on real-world video analytics applications, such as face recognition and pose classification, we show that DataX AutoScaler adapts to variations in stream content and achieves up to 43% improvement in overall application performance compared to a baseline system that uses HPA.

DataXc: Flexible and efficient communication in microservices-based stream analytics pipelines

A big challenge in changing a monolithic application into a performant microservices-based application is the design of efficient mechanisms for microservices to communicate with each other. Prior proposals range from custom point-to-point communication among microservices using protocols like gRPC to service meshes like Linkerd to a flexible, many-to-many communication using broker-based messaging systems like NATS. We propose a new communication mechanism, DataXc, that is more efficient than prior proposals in terms of message latency, jitter, message processing rate and use of network resources. To the best of our knowledge, DataXc is the first communication design that has the desirable flexibility of a broker-based messaging systems like NATS and the high-performance of a rigid, custom point-to-point communication method. DataXc proposes a novel “pull” based communication method (i.e consumers fetch messages from producers). This is unlike prior proposals like NATS, gRPC or Linkerd, all of which are “push” based (i.e. producers send messages to consumers). Such communication methods make it difficult to take advantage of differential processing rates of consumers like video analytics tasks. In contrast, DataXc proposes a “pull” based design that avoids unnecessary communication of messages that are eventually discarded by the consumers. Also, unlike prior proposals, DataXc successfully addresses several key challenges in streaming video analytics pipelines like non-uniform processing of frames from multiple cameras, and high variance in latency of frames processed by consumers, all of which adversely affect the quality of insights from streaming video analytics. We report results on two popular real-world, streaming video analytics pipelines (video surveillance, and video action recognition). Compared to NATS, DataXc is just as flexible, but it has far superior performance: upto 80% higher processing rate, 3X lower latency, 7.5X lower jitter and 4.5X lower network bandwidth usage. Compared to gRPC or Linkerd, DataXc is highly flexible, achieves up to 2X higher processing rate, lower latency and lower jitter, but it also consumes more network bandwidth.

Application-specific, Dynamic Reservation of 5G Compute and Network Resources by using Reinforcement Learning

5G services and applications explicitly reserve compute and network resources in today’s complex and dynamic infrastructure of multi-tiered computing and cellular networking to ensure application-specific service quality metrics, and the infrastructure providers charge the 5G services for the resources reserved. A static, one-time reservation of resources at service deployment typically results in extended periods of under-utilization of reserved resources during the lifetime of the service operation. This is due to a plethora of reasons like changes in content from the IoT sensors (for example, change in number of people in the field of view of a camera) or a change in the environmental conditions around the IoT sensors (for example, time of the day, rain or fog can affect data acquisition by sensors). Under-utilization of a specific resource like compute can also be due to temporary inadequate availability of another resource like the network bandwidth in a dynamic 5G infrastructure. We propose a novel Reinforcement Learning-based online method to dynamically adjust an application’s compute and network resource reservations to minimize under-utilization of requested resources, while ensuring acceptable service quality metrics. We observe that a complex application-specific coupling exists between the compute and network usage of an application. Our proposed method learns this coupling during the operation of the service, and dynamically modulates the compute and network resource requests to mimimize under-utilization of reserved resources. Through experimental evaluation using real-world video analytics application, we show that our technique is able to capture complex compute-network coupling relationship in an online manner i.e. while the application is running, and dynamically adapts and saves up to 65% compute and 93% network resources on average (over multiple runs), without significantly impacting application accuracy.

ROMA: Resource Orchestration for Microservices-based 5G Applications

With the growth of 5G, Internet of Things (IoT), edge computing and cloud computing technologies, the infrastructure (compute and network) available to emerging applications (AR/VR, autonomous driving, industry 4.0, etc.) has become quite complex. There are multiple tiers of computing (IoT devices, near edge, far edge, cloud, etc.) that are connected with different types of networking technologies (LAN, LTE, 5G, MAN, WAN, etc.). Deployment and management of applications in such an environment is quite challenging. In this paper, we propose ROMA, which performs resource orchestration for microservices-based 5G applications in a dynamic, heterogeneous, multi-tiered compute and network fabric. We assume that only application-level requirements are known, and the detailed requirements of the individual microservices in the application are not specified. As part of our solution, ROMA identifies and leverages the coupling relationship between compute and network usage for various microservices and solves an optimization problem in order to appropriately identify how each microservice should be deployed in the complex, multi-tiered compute and network fabric, so that the end-to-end application requirements are optimally met. We implemented two real-world 5G applications in video surveillance and intelligent transportation system (ITS) domains. Through extensive experiments, we show that ROMA is able to save up to 90%, 55% and 44% compute and up to 80%, 95% and 75% network bandwidth for the surveillance (watchlist) and transportation application (person and car detection), respectively. This improvement is achieved while honoring the application performance requirements, and it is over an alternative scheme that employs a static and overprovisioned resource allocation strategy by ignoring the resource coupling relationships.

ECO: Edge-Cloud Optimization of 5G applications

Centralized cloud computing with 100+ milliseconds network latencies cannot meet the tens of milliseconds to sub-millisecond response times required for emerging 5G applications like autonomous driving, smart manufacturing, tactile internet, and augmented or virtual reality. We describe a new, dynamic runtime that enables such applications to make effective use of a 5G network, computing at the edge of this network, and resources in the centralized cloud, at all times. Our runtime continuously monitors the interaction among the microservices, estimates the data produced and exchanged among the microservices, and uses a novel graph min-cut algorithm to dynamically map the microservices to the edge or the cloud to satisfy application-specific response times. Our runtime also handles temporary network partitions, and maintains data consistency across the distributed fabric by using microservice proxies to reduce WAN bandwidth by an order of magnitude, all in an application-specific manner by leveraging knowledge about the application’s functions, latency-critical pipelines and intermediate data. We illustrate the use of our runtime by successfully mapping two complex, representative real-world video analytics applications to the AWS/Verizon Wavelength edge-cloud architecture, and improving application response times by 2x when compared with a static edge-cloud implementation.