Machine LearningRead the latest publications from our world-class team of researchers from our Machine Learning team who have been at the forefront of machine learning developments, including deep learning, support vector machines, and semantic analysis, for over a decade. We develop innovative technologies integrated into NEC’s products and services. Machine learning is the critical technology for data analytics and artificial intelligence. Recent progress in this field opens opportunities for various new applications.

Posts

Weakly-Supervised Temporal Action Localization with Multi-Modal Plateau Transformers

Weakly Supervised Temporal Action Localization (WSTAL) aims to jointly localize and classify action segments in untrimmed videos with only video level annotations. To leverage video level annotations most existing methods adopt the multiple instance learning paradigm where frame/snippet level action predictions are first produced and then aggregated to form a video-level prediction. Although there are trials to improve snippet-level predictions by modeling temporal relationships we argue that those implementations have not sufficiently exploited such information. In this paper we propose Multi Modal Plateau Transformers (M2PT) for WSTAL by simultaneously exploiting temporal relationships among snippets complementary information across data modalities and temporal coherence among consecutive snippets. Specifically M2PT explores a dual Transformer architecture for RGB and optical flow modalities which models intra modality temporal relationship with a self attention mechanism and inter modality temporal relationship with a cross attention mechanism. To capture the temporal coherence that consecutive snippets are supposed to be assigned with the same action M2PT deploys a Plateau model to refine the temporal localization of action segments. Experimental results on popular benchmarks demonstrate that our proposed M2PT achieves state of the art performance.

Why Not Use Your Textbook? Knowledge-Enhanced Procedure Planning of Instructional Videos

In this paper we explore the capability of an agent to construct a logical sequence of action steps thereby assembling a strategic procedural plan. This plan is crucial for navigating from an initial visual observation to a target visual outcome as depicted in real-life instructional videos. Existing works have attained partial success by extensively leveraging various sources of information available in the datasets such as heavy intermediate visual observations procedural names or natural language step-by-step instructions for features or supervision signals. However the task remains formidable due to the implicit causal constraints in the sequencing of steps and the variability inherent in multiple feasible plans. To tackle these intricacies that previous efforts have overlooked we propose to enhance the agent’s capabilities by infusing it with procedural knowledge. This knowledge sourced from training procedure plans and structured as a directed weighted graph equips the agent to better navigate the complexities of step sequencing and its potential variations. We coin our approach KEPP a novel Knowledge-Enhanced Procedure Planning system which harnesses a probabilistic procedural knowledge graph extracted from training data effectively acting as a comprehensive textbook for the training domain. Experimental evaluations across three widely-used datasets under settings of varying complexity reveal that KEPP attains superior state-of-the-art results while requiring only minimal supervision. Code and trained model are available at https://github.com/Ravindu-Yasas-Nagasinghe/KEPP

Learning from Synthetic Human Group Activities

The study of complex human interactions and group activities has become a focal point in human-centric computer vision. However, progress in related tasks is often hindered by the challenges of obtaining large-scale labeled datasets from real-world scenarios. To address the limitation, we introduce M3Act, a synthetic data generator for multi-view multi-group multi-person human atomic actions and group activities. Powered by Unity Engine, M3Act features multiple semantic groups, highly diverse and photorealistic images, and a comprehensive set of annotations, which facilitates the learning of human-centered tasks across single-person, multi-person, and multi-group conditions. We demonstrate the advantages of M3Act across three core experiments. The results suggest our synthetic dataset can significantly improve the performance of several downstream methods and replace real-world datasets to reduce cost. Notably, M3Act improves the state-of-the-art MOTRv2 on DanceTrack dataset, leading to a hop on the leaderboard from 10t?h to 2n?d place. Moreover, M3Act opens new research for controllable 3D group activity generation. We define multiple metrics and propose a competitive baseline for the novel task. Our code and data are available at our project page: http://cjerry1243.github.io/M3Act.

Evaluating Cellularity Estimation Methods: Comparing AI Counting with Pathologists’ Visual Estimates

The development of next-generation sequencing (NGS) has enabled the discovery of cancer-specific driver gene alternations, making precision medicine possible. However, accurategenetic testing requires a sufficient amount of tumor cells in the specimen. The evaluation of tumor content ratio (TCR) from hematoxylin and eosin (H&E)-stained images has been found to vary between pathologists, making it an important challenge to obtain an accurate TCR. In this study, three pathologists exhaustively labeled all cells in 41 regions from 41 lung cancer cases as either tumor, non-tumor or indistinguishable, thus establishing a “gold standard” TCR. We then compared the accuracy of the TCR estimated by 13 pathologists based on visual assessment and the TCR calculated by an AI model that we have developed. It is a compact and fast model that follows a fully convolutional neural network architecture and produces cell detection maps which can be efficiently post-processed to obtain tumor and non-tumor cell counts from which TCR is calculated. Its raw cell detection accuracy is 92% while its classification accuracy is 84%. The results show that the error between the gold standard TCR and the AI calculation was significantly smaller than that between the gold standard TCR and the pathologist’s visual assessment (p < 0.05). Additionally, the robustness of AI models across institutions is a key issue and we demonstrate that the variation in AI was smallerthan that in the average of pathologists when evaluated by institution. These findings suggest that the accuracy of tumor cellularity assessments in clinical workflows is significantly improved by the introduction of robust AI models, leading to more efficient genetic testing and ultimately to better patient outcomes.

Improving Test-Time Adaptation For Histopathology Image Segmentation: Gradient-To-Parameter Ratio Guided Feature Alignment

In the field of histopathology, computer-aided systems face significant challenges due to diverse domain shifts. They include variations in tissue source organ, preparation and scanningprotocols. These domain shifts can significantly impact algorithms’ performance in histopathology tasks, such as cancer segmentation. In this paper, we address this problem byproposing a new multi-task extension of test-time adaptation (TTA) for simultaneous semantic, and instance segmentation of nuclei. First, to mitigate domain shifts during testing, weuse a feature alignment TTA method, through which we adapt the feature vectors of the target data based on the feature vectors’ statistics derived from the source data. Second, the ratioof Gradient norm to Parameter norm (G2P) is proposed to guide the feature alignment procedure. Our approach requires a pre-trained model on the source data, without requiringaccess to the source dataset during TTA. This is particularly crucial in medical applications where access to training data may be restricted due to privacy concerns or patient consent. Through experimental validation, we demonstrate that the proposed method consistently yields competitive results when applied to out-of-distribution data across multiple datasets.

Strategic Preys Make Acute Predators: Enhancing Camouflaged Object Detectors by Generating Camouflaged Objects

Camouflaged object detection (COD) is the challenging task of identifying camouflaged objects visually blended into surroundings. Albeit achieving remarkable success, existing COD detectors still struggle to obtain precise results in some challenging cases. To handle this problem, we draw inspiration from the prey-vs-predator game that leads preys to develop better camouflage and predators to acquire more acute vision systems and develop algorithms from both the prey side and the predator side. On the prey side, we propose an adversarial trainingframework, Camouflageator, which introduces an auxiliary generator to generate more camouflaged objects that are harder for a COD method to detect. Camouflageator trains the generator and detector in an adversarial way such that the enhanced auxiliary generator helps produce a stronger detector. On the predator side, we introduce a novel COD method, called Internal Coherence and Edge Guidance (ICEG), which introduces a camouflaged feature coherence module to excavate the internal coherence of camouflaged objects, striving to obtain morecomplete segmentation results. Additionally, ICEG proposes a novel edge-guided separated calibration module to remove false predictions to avoid obtaining ambiguous boundaries. Extensive experiments show that ICEG outperforms existing COD detectors and Camouflageator is flexible to improve various COD detectors, including ICEG, which brings state-of-the-art COD performance.

Provable Membership Inference Privacy

In applications involving sensitive data, such as finance and healthcare, the necessity for preserving data privacy can be a significant barrier to machine learning model development.Differential privacy (DP) has emerged as one canonical standard for provable privacy. However, DP’s strong theoretical guarantees often come at the cost of a large drop in its utility for machine learning; and DP guarantees themselves are difficult to interpret. In this work, we propose a novel privacy notion, membership inference privacy (MIP), as a steptowards addressing these challenges. We give a precise characterization of the relationship between MIP and DP, and show that in some cases, MIP can be achieved using less amountof randomness compared to the amount required for guaranteeing DP, leading to smaller drop in utility. MIP guarantees are also easily interpretable in terms of the success rate of membership inference attacks in a simple random subsampling setting. As a proof of concept, we also provide a simple algorithm for guaranteeing MIP without needing to guarantee DP.

Monitoring AI-Modified Content at Scale: A Case Study on the Impact of ChatGPT on AI Conference Peer Reviews

We present an approach for estimating the fraction of text in a large corpus which is likely to be substantially modified or produced by a large language model (LLM). Our maximum likelihood model leverages expert-written and AI-generated reference texts to accurately and efficiently examine real-world LLM-use at the corpus level. We apply this approach to a case study of scientific peer review in AI conferences that took place after the release of ChatGPT: ICLR 2024, NeurIPS 2023, CoRL 2023 and EMNLP 2023. Our results suggest that between 6.5% and 16.9% of text submitted as peer reviews to these conferences could have been substantially modified by LLMs, i.e. beyond spell-checking or minor writing updates. The circumstances in which generated text occurs offer insight into user behavior: the estimated fraction of LLM-generated text is higher in reviews which report lower confidence, were submitted close to the deadline, and from reviewers who are less likely to respond to author rebuttals. We also observe corpus-level trends in generated text which may be too subtle to detect at the individual level, and discuss the implications of such trends on peer review. We call for future interdisciplinary work to examine how LLM use is changing our information and knowledge practices.

Self-Consistent Decoding for More Factual Open Responses

Self-consistency has emerged as a powerful method for improving the accuracy of short answers generated by large language models. As previously defined, it only concerns the accuracy of a final answer parsed from generated text. In this work, we extend the idea to open response generation, by integrating voting into the decoding method. Each output sentence is selected from among multiple samples, conditioning on the previous selections, based on a simple token overlap score. We compare this “Sample & Select” method to greedy decoding, beam search, nucleus sampling, and the recently introduced hallucination avoiding decoders of DoLa, P-CRR, and S-CRR. We show that Sample & Select improves factuality by a 30% relative margin against these decoders in NLI-based evaluation on the subsets of CNN/DM and XSum used in the FRANK benchmark, while maintaining comparable ROUGE-1 F1 scores against reference summaries. We collect human verifications of the generated summaries, confirming the factual superiority of our method.

Disentangled Wasserstein Autoencoder for T-Cell Receptor Engineering

In protein biophysics, the separation between the functionally important residues (forming the active site or binding surface) and those that create the overall structure (the fold) is a well-established and fundamental concept. Identifying and modifying those functional sites is critical for protein engineering but computationally nontrivial, and requires significant domain knowledge. To automate this process from a data-driven perspective, we propose a disentangled Wasserstein autoencoder with an auxiliary classifier, which isolates the function-related patterns from the rest with theoretical guarantees. This enables one-pass protein sequence editing and improves the understanding of the resulting sequences and editing actionsinvolved. To demonstrate its effectiveness, we apply it to T-cell receptors (TCRs), a well-studied structure-function case. We show that our method can be used to alterthe function of TCRs without changing the structural backbone, outperforming several competing methods in generation quality and efficiency, and requiring only 10% of the running time needed by baseline models. To our knowledge, this is the first approach that utilizes disentangled representations for TCR engineering.