Machine LearningRead the latest publications from our world-class team of researchers from our Machine Learning team who have been at the forefront of machine learning developments, including deep learning, support vector machines, and semantic analysis, for over a decade. We develop innovative technologies integrated into NEC’s products and services. Machine learning is the critical technology for data analytics and artificial intelligence. Recent progress in this field opens opportunities for various new applications.

Posts

Learning to Localize Actions in Instructional Videos with LLM-Based Multi-Pathway Text-Video Alignment

Learning to localize temporal boundaries of procedure steps in instructional videos is challenging due to the limited availability of annotated large-scale training videos. Recent works focus on learning the cross-modal alignment between video segments and ASR-transcripted narration texts through contrastive learning. However, these methods fail to account for the alignment noise, i.e., irrelevant narrations to the instructional task in videos and unreliable timestamps in narrations. To address these challenges, this work proposes a novel training framework. Motivated by the strong capabilities of Large Language Models (LLMs) in procedure understanding and text summarization, we first apply an LLM to filter out task-irrelevant information and summarize task-related procedure steps (LLM-steps) from narrations. To further generate reliable pseudo-matching between the LLM-steps and the video for training, we propose the Multi-Pathway Text-Video Alignment (MPTVA) strategy. The key idea is to measure alignment between LLM-steps and videos via multiple pathways, including: (1) step-narration-video alignment using narration timestamps, (2) direct step-to-video alignment based on their long-term semantic similarity, and (3) direct step-to-video alignment focusing on short-term fine-grained semantic similarity learned from general video domains. The results from different pathways are fused to generate reliable pseudo step-video matching. We conducted extensive experiments across various tasks and problem settings to evaluate our proposed method. Our approach surpasses state-of-the-art methods in three downstream tasks: procedure step grounding, step localization, and narration grounding by 5.9%, 3.1%, and 2.8%.

MCTR: Multi Camera Tracking Transformer

Multi-camera tracking plays a pivotal role in various real-world applications. While end-to-end methods have gained significant interest in single-camera tracking, multi-camera tracking remains predominantly reliant on heuristic techniques. In response to this gap, this paper introduces Multi-Camera Tracking tRansformer (MCTR), a novel end-to-end approach tailored for multi-object detection and tracking across multiple cameras with overlapping fields of view. MCTR leverages end-to-end detectors like DEtector TRansformer (DETR) to produce detections and detection embeddings independently for each camera view. The framework maintains set of track embeddings that encaplusate global information about the tracked objects, and updates them at every frame by integrating the local information from the view-specific detection embeddings. The track embeddings are probabilistically associated with detections in every camera view and frame to generate consistent object tracks. The soft probabilistic association facilitates the design of differentiable losses that enable end-to-end training of the entire system. To validate our approach, we conduct experiments on MMPTrack and AI City Challenge, two recently introduced large-scale multi-camera multi-object tracking datasets.

Spatially Informed Gene Signatures for Response to Immunotherapy in Melanoma

We aim to improve the prediction of response or resistance to immunotherapies in patients with melanoma. This goal is based on the hypothesis that current gene signatures predicting immunotherapy outcomes show only modest accuracy due to the lack of spatial information about cellular functions and molecular processes within tumors and their microenvironment.

zeta-QVAE: A Quantum Variational Autoencoder utilizing Regularized Mixed-state Latent Representations

A major challenge in near-term quantum computing is its application to large real-world datasets due to scarce quantum hardware resources. One approach to enabling tractable quantum models for such datasets involves compressing the original data to manageable dimensions while still representing essential information for downstream analysis. In classical machine learning, variational autoencoders (VAEs) facilitate efficient data compression, representation learning for subsequent tasks, and novel data generation. However, no model has been proposed that exactly captures all of these features for direct application to quantum data on quantum computers. Some existing quantum models for data compression lack regularization of latent representations, thus preventing direct use for generation and control of generalization. Others are hybrid models with only some internal quantum components, impeding direct training on quantum data. To bridge this gap, we present a fully quantum framework, ?-QVAE, which encompasses all the capabilities of classical VAEs and can be directly applied for both classical and quantum data compression. Our model utilizes regularized mixed states to attain optimal latent representations. It accommodates various divergences for reconstruction and regularization. Furthermore, by accommodating mixed states at every stage, it can utilize the full-data density matrix and allow for a “global” training objective. Doing so, in turn, makes efficient optimization possible and has potential implications for private and federated learning. In addition to exploring the theoretical properties of ?-QVAE, we demonstrate its performance on representative genomics and synthetic data. Our results consistently indicate that ?-QVAE exhibits similar or better performance compared to matched classical models.

Exploring the Role of Reasoning Structures for Constructing Proofs in Multi-Step Natural Language Reasoning with Large Language Models

When performing complex multi-step reasoning tasks, the ability of Large Language Models (LLMs) to derive structured intermediate proof steps is important for ensuring that the models truly perform the desired reasoning and for improving models’ explainability. This paper is centred around a focused study: whether the current state-of-the-art generalist LLMs can leverage the structures in a few examples to better construct the proof structures with textit(Unknown sysvar: (in-context learning)). Our study specifically focuses on structure-aware demonstration and structure-aware pruning. We demonstrate that they both help improve performance. A detailed analysis is provided to help understand the results.

RIO-CPD: A Riemannian Geometric Method for Correlation-aware Online Change Point Detection

The objective of change point detection is to identify abrupt changes at potentially multiple points within a data sequence. This task is particularly challenging in the online setting where various types of changes can occur, including shifts in both the marginal and joint distributions of the data. This paper tackles these challenges by sequentially tracking correlation matrices on their Riemannian geometry, where the geodesic distances accurately capture the development of correlations. We propose Rio-CPD, a non-parametric correlation-aware online change point detection framework that combines the Riemannian geometry of the manifold of symmetric positive definite matrices and the cumulative sum statistic (CUSUM) for detecting change points. Rio-CPD enhances CUSUM by computing the geodesic distance from present observations to the Frechet mean of previous observations. With careful choice of metrics equipped to the Riemannian geometry, Rio-CPD is simple and computationally efficient. Experimental results on both synthetic and real-world datasets demonstrate that Rio-CPD outperforms existing methods in detection accuracy and efficiency.

Monitoring AI-Modified Content at Scale: A Case Study on the Impact of ChatGPT on AI Conference Peer Reviews

We present an approach for estimating the fraction of text in a large corpus which is likely to be substantially modified or produced by a large language model (LLM). Our maximum likelihood model leverages expert-written and AI-generated reference texts to accurately and efficiently examine real-world LLM-use at the corpus level. We apply this approach to a case study of scientific peer review in AI conferences that took place after the release of ChatGPT: ICLR 2024, NeurIPS 2023, CoRL 2023 and EMNLP 2023. Our results suggest that between 6.5% and 16.9% of text submitted as peer reviews to these conferences could have been substantially modified by LLMs, i.e. beyond spell-checking or minor writing updates. The circumstances in which generated text occurs offer insight into user behavior: the estimated fraction of LLM-generated text is higher in reviews which report lower confidence, were submitted close to the deadline, and from reviewers who are less likely to respond to author rebuttals. We also observe corpus-level trends in generated text which may be too subtle to detect at the individual level, and discuss the implications of such trends on peer review. We call for future interdisciplinary work to examine how LLM use is changing our information and knowledge practices.

LLMs and MI Bring Innovation to Material Development Platforms

In this paper, we introduce efforts to apply large language models (LLMs) to the field of material development. NEC is advancing the development of a material development platform. By applying core technologies corresponding to two material development steps, namely investigation activities (Read paper/patent) and experimental planning (Design Experiment Plan), the platform organizes documents such as papers and reports as well as data such as experimental results and then presents in an interactive way to users. In addition, with techniquesthat reflect physical and chemical principles into machine learning models, AI can learn even with limited data and accurately predict material properties. Through this platform, we aim to achieve the seamless integration of materials informatics (MI) with a vast body of industry literature and knowledge, thereby bringing innovation to the material development process.

Weakly-Supervised Temporal Action Localization with Multi-Modal Plateau Transformers

Weakly Supervised Temporal Action Localization (WSTAL) aims to jointly localize and classify action segments in untrimmed videos with only video level annotations. To leverage video level annotations most existing methods adopt the multiple instance learning paradigm where frame/snippet level action predictions are first produced and then aggregated to form a video-level prediction. Although there are trials to improve snippet-level predictions by modeling temporal relationships we argue that those implementations have not sufficiently exploited such information. In this paper we propose Multi Modal Plateau Transformers (M2PT) for WSTAL by simultaneously exploiting temporal relationships among snippets complementary information across data modalities and temporal coherence among consecutive snippets. Specifically M2PT explores a dual Transformer architecture for RGB and optical flow modalities which models intra modality temporal relationship with a self attention mechanism and inter modality temporal relationship with a cross attention mechanism. To capture the temporal coherence that consecutive snippets are supposed to be assigned with the same action M2PT deploys a Plateau model to refine the temporal localization of action segments. Experimental results on popular benchmarks demonstrate that our proposed M2PT achieves state of the art performance.

Why Not Use Your Textbook? Knowledge-Enhanced Procedure Planning of Instructional Videos

In this paper we explore the capability of an agent to construct a logical sequence of action steps thereby assembling a strategic procedural plan. This plan is crucial for navigating from an initial visual observation to a target visual outcome as depicted in real-life instructional videos. Existing works have attained partial success by extensively leveraging various sources of information available in the datasets such as heavy intermediate visual observations procedural names or natural language step-by-step instructions for features or supervision signals. However the task remains formidable due to the implicit causal constraints in the sequencing of steps and the variability inherent in multiple feasible plans. To tackle these intricacies that previous efforts have overlooked we propose to enhance the agent’s capabilities by infusing it with procedural knowledge. This knowledge sourced from training procedure plans and structured as a directed weighted graph equips the agent to better navigate the complexities of step sequencing and its potential variations. We coin our approach KEPP a novel Knowledge-Enhanced Procedure Planning system which harnesses a probabilistic procedural knowledge graph extracted from training data effectively acting as a comprehensive textbook for the training domain. Experimental evaluations across three widely-used datasets under settings of varying complexity reveal that KEPP attains superior state-of-the-art results while requiring only minimal supervision. Code and trained model are available at https://github.com/Ravindu-Yasas-Nagasinghe/KEPP