Posts

SkyHAUL: A Self-Organizing Gigabit Network In The Sky

SkyHAUL: A Self-Organizing Gigabit Network In The Sky We design and build SkyHaul, the first large-scale, self-organizing network of Unmanned Aerial Vehicles (UAVs) that are connected using a mm Wave wireless mesh backhaul. While the use of a mmWave backhaul paves the way for a new class of bandwidth-intensive, latency-sensitive cooperative applications (e.g. LTE coverage during disasters), the network of UAVs allows these applications to be executed at operating ranges that are far beyond the line-of-sight distances that limit individual UAVs today.To realize the challenging vision of deploying and maintaining an airborne, mm Wave mesh backhaul that caters to dynamic applications, SkyHaul’s design incorporates various elements: (i) Role-specific UAV operations that simultaneously address application tracking and backhaul connectivity (ii) Novel algorithms to jointly address the problem of deployment (position, yaw of UAVs) and traffic routing across the UAV network, and (iii)A provably optimal solution for fast and safe reconfiguration of UAV backhaul during application dynamics. We evaluate the performance of SkyHaul through both real-world UAV flight operations as well as large scale simulations.

SpaceBeam: LiDAR-Driven One-Shot mmWave Beam Management

SpaceBeam: LiDAR-Driven One-Shot mmWave Beam Management mmWave 5G networks promise to enable a new generation of networked applications requiring a combination of high throughput and ultra-low latency. However, in practice, mmWave performance scales poorly for large numbers of users due to the significant overhead required to manage the highly-directional beams. We find that we can substantially reduce or eliminate this overhead by using out-of-band infrared measurements of the surrounding environment generated by a LiDAR sensor. To accomplish this, we develop a ray-tracing system that is robust to noise and other artifacts from the infrared sensor, create a method to estimate the reflection strength from sensor data, and finally apply this information to the multiuser beam selection process. We demonstrate that this approach reduces beam-selection overhead by over 95% in indoor multi-user scenarios, reducing network latency by over 80% and increasing throughput by over 2× in mobile scenarios.

SkyHaul: An Autonomous Gigabit Network Fabric In The Sky

SkyHaul: An Autonomous Gigabit Network Fabric In The Sky We design and build SKYHAUL, the first large scale, autonomous, self organizing network of Unmanned Aerial Vehicles (UAVs) that are connected using a mmWave wireless mesh backhaul. While the use of a mmWave backhaul paves the way for a new class of bandwidth intensive, latency sensitive cooperative applications (e.g., LTE coverage during disasters, surveillance during rescue in challenging terrains), the network of UAVs allows these applications to be executed at operating ranges that are far beyond the line of sight distances that limit individual UAVs today. To realize the challenging vision of deploying and maintaining an airborne mmWave mesh backhaul to cater to dynamic applications, SKYHAUL’s design incorporates various elements: (1) Role specific UAV operations that simultaneously address application tracking and backhaul connectivity (2) Novel algorithms to jointly address the problem of deployment (position, yaw of UAVs) and traffic routing across the UAV network, and (3) A provably optimal solution for fast and safe reconfiguration of UAV backhaul during application dynamics. We implement SKYHAUL on four DJI Matrice 600 Pros to demonstrate its practicality and performance through autonomous flight operations, complemented by large scale simulations.