mmWave (millimeter Wave) refers to a band of radio frequencies in the electromagnetic spectrum that ranges from 30 gigahertz (GHz) to 300 gigahertz (GHz). This frequency range is also known as the millimeter-wave band because the wavelengths are measured in millimeters. mmWave technology has gained significant attention for its potential applications in various fields, particularly in wireless communication and networking. This technology enables high-capacity communication, supports bandwidth-intensive and latency-sensitive applications, and allows for extended operating ranges beyond line-of-sight distances.


SkyHAUL: A Self-Organizing Gigabit Network In The Sky

We design and build SkyHaul, the first large-scale, self-organizing network of Unmanned Aerial Vehicles (UAVs) that are connected using a mm Wave wireless mesh backhaul. While the use of a mmWave backhaul paves the way for a new class of bandwidth-intensive, latency-sensitive cooperative applications (e.g. LTE coverage during disasters), the network of UAVs allows these applications to be executed at operating ranges that are far beyond the line-of-sight distances that limit individual UAVs today.To realize the challenging vision of deploying and maintaining an airborne, mm Wave mesh backhaul that caters to dynamic applications, SkyHaul’s design incorporates various elements: (i) Role-specific UAV operations that simultaneously address application tracking and backhaul connectivity (ii) Novel algorithms to jointly address the problem of deployment (position, yaw of UAVs) and traffic routing across the UAV network, and (iii)A provably optimal solution for fast and safe reconfiguration of UAV backhaul during application dynamics. We evaluate the performance of SkyHaul through both real-world UAV flight operations as well as large scale simulations.

SpaceBeam: LiDAR-Driven One-Shot mmWave Beam Management

mmWave 5G networks promise to enable a new generation of networked applications requiring a combination of high throughput and ultra-low latency. However, in practice, mmWave performance scales poorly for large numbers of users due to the significant overhead required to manage the highly-directional beams. We find that we can substantially reduce or eliminate this overhead by using out-of-band infrared measurements of the surrounding environment generated by a LiDAR sensor. To accomplish this, we develop a ray-tracing system that is robust to noise and other artifacts from the infrared sensor, create a method to estimate the reflection strength from sensor data, and finally apply this information to the multiuser beam selection process. We demonstrate that this approach reduces beam-selection overhead by over 95% in indoor multi-user scenarios, reducing network latency by over 80% and increasing throughput by over 2× in mobile scenarios.

SkyLiTE: End-to-End Design of Low-altitutde UAV Networks for Providing LTE Connectivity

Un-manned aerial vehicle (UAVs) have the potential to change the landscape of wide-area wireless connectivity by bringing them to areas where connectivity was sparing or non-existent (e.g. rural areas) or has been compromised due to disasters. While Google’s Project Loon and Facebook’s Project Aquila are examples of high-altitude, long-endurance UAV-based connectivity efforts in this direction, the telecom operators (e.g. AT&T and Verizon) have been exploring low-altitude UAV-based LTE solutions for on-demand deployments. Understandably, these projects are in their early stages and face formidable challenges in their realization and deployment. The goal of this document is to expose the reader to both the challenges as well as the potential offered by these unconventional connectivity solutions. We aim to explore the end-to-end design of such UAV-based connectivity networks particularly in the context of low-altitude UAV networks providing LTE connectivity. Specifically, we aim to highlight the challenges that span across multiple layers (access, core network, and backhaul) in an inter-twined manner as well as the richness and complexity of the design space itself. To help interested readers navigate this complex design space towards a solution, we also articulate the overview of one such end-to-end design, namely SkyLiTE– a self-organizing network of low-altitude UAVs that provide optimized LTE connectivity in a desired region.