Multi-Sensor Feature Fusion involves combining information from multiple sensors or sources to improve the overall understanding or representation of the data. This is common in applications such as sensor networks or computer vision systems with multiple input modalities.


A Multi-sensor Feature Fusion Network Model for Bearings Grease Life Assessment in Accelerated Experiments

This paper presents a multi-sensor feature fusion (MSFF) neural network comprised of two inception layer-type multiple channel feature fusion (MCFF) networks for both inner-sensor and cross-sensor feature fusion in conjunction with a deep residual neural network (ResNet) for accurate grease life assessment and bearings health monitoring. The single MCFF network is designed for low-level feature extraction and fusion of either vibration or acoustic emission signals at multi-scales. The concatenation of MCFF networks serves as a cross-sensor feature fusion layer to combine extracted features from both vibration and acoustic emission sources. A ResNet is developed for high-level feature extraction from the fused feature maps and prediction. Besides, to handle the large volume of collected data, original time-series data are transformed to the frequency domain with different sampling intervals and targeted ranges. The proposed MSFF network outperforms other models based on different fusion methods, fully connected network predictors and/or a single sensor source.