Mustafa Y. Arslan is a former researcher at NEC Laboratories America, Inc.

Posts

RFGo: A Seamless Self-checkout System for Apparel Stores Using RFID

Retailers are aiming to enhance customer experience by automating the checkout process. The key impediment here is the effort to manually align the product barcode with the scanner, requiring sequential handling of items without blocking the line-of-sight of the laser beam. While recent systems such as Amazon Go eliminate human involvement using an extensive array of cameras, we propose a privacy-preserving alternative, RFGo, that identifies products using passive RFID tags. Foregoing continuous monitoring of customers throughout the store, RFGo scans the products in a dedicated checkout area that is large enough for customers to simply walk in and stand until the scan is complete (in two seconds). Achieving such low-latency checkout is not possible with traditional RFID readers, which decode tags using one antenna at a time. To overcome this, RFGo includes a custom-built RFID reader that simultaneously decodes a tag’s response from multiple carrier-level synchronized antennas enabling a large set of tag observations in a very short time. RFGo then feeds these observations to a neural network that accurately distinguishes the products within the checkout area from those that are outside. We build a prototype of RFGo and evaluate its performance in challenging scenarios. Our experiments show that RFGo is extremely accurate, fast and well-suited for practical deployment in apparel stores.

DeepTrack: Grouping RFID Tags Based on Spatio-temporal Proximity in Retail Spaces

RFID applications for taking inventory and processing transactions in point-of-sale (POS) systems improve operational efficiency but are not designed to provide insights about customers’ interactions with products. We bridge this gap by solving the proximity grouping problem to identify groups of RFID tags that stay in close proximity to each other over time. We design DeepTrack, a framework that uses deep learning to automatically track the group of items carried by a customer during her shopping journey. This unearths hidden purchase behaviors helping retailers make better business decisions and paves the way for innovative shopping experiences such as seamless checkout (‘a la Amazon Go). DeepTrack employs a recurrent neural network (RNN) with the attention mechanism, to solve the proximity grouping problem in noisy settings without explicitly localizing tags. We tailor DeepTrack’s design to track not only mobile groups (products carried by customers) but also flexibly identify stationary tag groups (products on shelves). The key attribute of DeepTrack is that it only uses readily available tag data from commercial off-the-shelf RFID equipment. Our experiments demonstrate that, with only two hours training data, DeepTrack achieves a grouping accuracy of 98.18% (99.79%) when tracking eight mobile (stationary) groups.