A Network Field Experiment refers to a practical and real-world investigation conducted to evaluate, test, or deploy telecommunications technologies, services, or infrastructure in operational environments. Telecom network field experiments are essential for understanding how network components, protocols, and services perform under real-world conditions and how they interact with each other and with end-users.

Posts

Deep Learning-based Intrusion Detection and Impulsive Event Classification for Distributed Acoustic Sensing across Telecom Networks

We introduce two pioneering applications leveraging Distributed Fiber Optic Sensing (DFOS) and Machine Learning (ML) technologies. These innovations offer substantial benefits forfortifying telecom infrastructures and public safety. By harnessing existing telecom cables, our solutions excel in perimeter intrusion detection via buried cables and impulsive event classification through aerial cables. To achieve comprehensive intrusion detection, we introduce a label encoding strategy for multitask learning and evaluate the generalization performance of the proposed approach across various domain shifts. For accurate recognition of impulsive acoustic events, we compare several standard choices of representations for raw waveform data and neural network architectures, including convolutional neural networks (ConvNets) and vision transformers (ViT).We also study the effectiveness of the built-in inductive biases under both high- and low-fidelity sensing conditions and varying amounts of labeled training data. All computations are executed locally through edge computing, ensuring real-time detection capabilities. Furthermore, our proposed system seamlessly integrates with cameras for video analytics, significantly enhancing overall situation awareness of the surrounding environment.

Real-time Intrusion Detection and Impulsive Acoustic Event Classification with Fiber Optic Sensing and Deep Learning Technologies over Telecom Networks

We review various use cases of distributed-fiber-optic-sensing and machine-learning technologies that offer advantages to telecom fiber networks on existing fiber infrastructures. Byleveraging an edge-AI platform, perimeter intrusion detection and impulsive acoustic event classification can be performed locally on-the-fly, ensuring real-time detection with low latency.

Explore Benefits of Distributed Fiber Optic Sensing for Optical Network Service Providers

We review various applications of distributed fiber optic sensing (DFOS) and machine learning (ML) technologies that particularly benefit telecom operators’ fiber networks and businesses. By leveraging relative phase shift of the reflectance of coherent Rayleigh, Brillouin and Raman scattering of light wave, the ambient environmental vibration, acoustic effects, temperature and fiber/cable strain can be detected. Fiber optic sensing technology allows optical fiber to support sensing features in addition to its conventional role to transmit data in telecommunications. DFOS has recently helped telecom operators by adding multiple sensing features and proved feasibility of co-existence of sensing and communication systems on same fiber. We review the architecture of DFOS technique and show examples where optical fiber sensing helps enhance network operation efficiency and create new services for customers on deployed fiber infrastructures, such as determination of cable locations, cable cut prevention, perimeter intrusion detection and networked sensing applications. In addition, edge AI platform allows data processing to be conducted on-the-fly with low latency. Based on discriminative spatial-temporal signatures of different events of interest, real-time processing of the sensing data from the DFOS system provides results of the detection, classification and localization immediately.

First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication Over an Operational Telecom Network

To the best of our knowledge, we present the first field trial of distributed fiber optical sensing (DFOS) and high-speed communication, comprising a coexisting system, over an operation telecom network. Using probabilistic-shaped (PS) DP-144QAM, a 36.8 Tb/s with an 8.28-b/s/Hz spectral efficiency (SE) (48-Gbaud channels, 50-GHz channel spacing) was achieved. Employing DFOS technology, road traffic, i.e., vehicle speed and vehicle density, were sensed with 98.5% and 94.5% accuracies, respectively, as compared to video analytics. Additionally, road conditions, i.e., roughness level was sensed with >85% accuracy via a machine learning based classifier.