Posts

Weight Pruning Techniques for Nonlinear Impairment Compensation using Neural Networks

Weight Pruning Techniques for Nonlinear Impairment Compensation using Neural Networks Neural networks (NNs) are attractive for nonlinear impairment compensation applications in communication systems, such as optical fiber nonlinearity, nonlinearity of driving amplifiers, and nonlinearity of semiconductor optical amplifiers. Without prior knowledge of the transmission link or the hardware characteristics, optimal parameters are completely constructed from a data-driven approach by exploring training datasets, once the NN structure is given. On the other hand, due to computational power and energy consumption, especially in high-speed communication systems, the computational complexity of the optimized NN needs to be confined to the hardware, such as FPGA or ASIC without sacrificing its performance improvement. In this paper, two approaches are presented to accommodate the NN-based algorithms for high-speed communication systems. The first approach is to reduce computational complexity of the NN-based nonlinearity compensation algorithms on the basis of weight pruning (WP). WP can significantly reduce the computational complexity, especially because the nonlinear compensation task studied here results in a sparse NN. The authors have studied an enhanced approach of WP by imposing an additional restriction on the selection of non-zero weights on each hidden layer. The second approach is to implement NNs onto a silicon-photonic integrated platform, enabling power efficiency to be further improved without sacrificing the high-speed operation.

You Are What and Where You Are: Graph Enhanced Attention Network for Explainable POI Recommendation

You Are What and Where You Are: Graph Enhanced Attention Network for Explainable POI Recommendation Point-of-interest (POI) recommendation is an emerging area of research on location-based social networks to analyze user behaviors and contextual check-in information. For this problem, existing approaches, with shallow or deep architectures, have two major drawbacks. First, for these approaches, the attributes of individuals have been largely ignored. Therefore, it would be hard, if not impossible, to gather sufficient user attribute features to have complete coverage of possible motivation factors. Second, most existing models preserve the information of users or POIs by latent representations without explicitly highlighting salient factors or signals. Consequently, the trained models with unjustifiable parameters provide few persuasive rationales to explain why users favor or dislike certain POIs and what really causes a visit. To overcome these drawbacks, we propose GEAPR, a POI recommender that is able to interpret the POI prediction in an end-to-end fashion. Specifically, GEAPR learns user representations by aggregating different factors, such as structural context, neighbor impact, user attributes, and geolocation influence. GEAPR takes advantage of a triple attention mechanism to quantify the influences of different factors for each resulting recommendation and performs a thorough analysis of the model interpretability. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed model. GEAPR is deployed and under test on an internal web server. An example interface is presented to showcase its application on explainable POI recommendation.

Interpreting Convolutional Sequence Model by Learning Local Prototypes with Adaptation Regularization

Interpreting Convolutional Sequence Model by Learning Local Prototypes with Adaptation Regularization n many high-stakes applications of machine learning models, outputting only predictions or providing statistical confidence is usually insufficient to gain trust from end users, who often prefer a transparent reasoning paradigm. Despite the recent encouraging developments on deep networks for sequential data modeling, due to the highly recursive functions, the underlying rationales of their predictions are difficult to explain. Thus, in this paper, we aim to develop a sequence modeling approach that explains its own predictions by breaking input sequences down into evidencing segments (i.e., sub-sequences) in its reasoning. To this end, we build our model upon convolutional neural networks, which, in their vanilla forms, associates local receptive fields with outputs in an obscure manner. To unveil it, we resort to case-based reasoning, and design prototype modules whose units (i.e., prototypes) resemble exemplar segments in the problem domain. Each prediction is obtained by combining the comparisons between the prototypes and the segments of an input. To enhance interpretability, we propose a training objective that delicately adapts the distribution of prototypes to the data distribution in latent spaces, and design an algorithm to map prototypes to human-understandable segments. Through extensive experiments in a variety of domains, we demonstrate that our model can achieve high interpretability generally, together with a competitive accuracy to the state-of-the-art approaches.