Node Classification is a task in graph-based machine learning where the goal is to assign labels to nodes in a graph. Each node represents an entity, and the task involves predicting the category or class to which each node belongs. Node classification is commonly used in applications such as social network analysis, citation networks, and biological networks.


Node Classification in Temporal Graphs through Stochastic Sparsification and Temporal Structural Convolution

Node Classification in Temporal Graphs through Stochastic Sparsification and Temporal Structural Convolution Node classification in temporal graphs aims to predict node labels based on historical observations. In real-world applications, temporal graphs are complex with both graph topology and node attributes evolving rapidly, which poses a high overfitting risk to existing graph learning approaches. In this paper, we propose a novel Temporal Structural Network (TSNet) model, which jointly learns temporal and structural features for node classification from the sparsified temporal graphs. We show that the proposed TSNet learns how to sparsify temporal graphs to favor the subsequent classification tasks and prevent overfitting from complex neighborhood structures. The effective local features are then extracted by simultaneous convolutions in temporal and spatial domains. Using the standard stochastic gradient descent and backpropagation techniques, TSNet iteratively optimizes sparsification and node representations for subsequent classification tasks. Experimental study on public benchmark datasets demonstrates the competitive performance of the proposed model in node classification. Besides, TSNet has the potential to help domain experts to interpret and visualize the learned models.

Adaptive Neural Network for Node Classification in Dynamic Networks

Adaptive Neural Network for Node Classification in Dynamic Networks Given a network with the labels for a subset of nodes, transductive node classification targets to predict the labels for the remaining nodes in the network. This technique has been used in a variety of applications such as voxel functionality detection in brain network and group label prediction in social network. Most existing node classification approaches are performed in static networks. However, many real-world networks are dynamic and evolve over time. The dynamics of both node attributes and network topology jointly determine the node labels. In this paper, we study the problem of classifying the nodes in dynamic networks. The task is challenging for three reasons. First, it is hard to effectively learn the spatial and temporal information simultaneously. Second, the network evolution is complex. The evolving patterns lie in both node attributes and network topology. Third, for different networks or even different nodes in the same network, the node attributes, the neighborhood node representations and the network topology usually affect the node labels differently, it is desirable to assess the relative importance of different factors over evolutionary time scales. To address the challenges, we propose AdaNN, an adaptive neural network for transductive node classification. AdaNN learns node attribute information by aggregating the node and its neighbors, and extracts network topology information with a random walk strategy. The attribute information and topology information are further fed into two connected gated recurrent units to learn the spatio-temporal contextual information. Additionally, a triple attention module is designed to automatically model the different factors that influence the node representations. AdaNN is the first node classification model that is adaptive to different kinds of dynamic networks. Extensive experiments on real datasets demonstrate the effectiveness of AdaNN.