Optics and Biometrics
Forget passwords—identity verification can now be accomplished with the touch of a finger or in the blink of an eye as the biometrics field expands to encompass new techniques and application areas.
Read our Optical Networking and Sensing publications from our team of researchers. We are leading world-class research into the next generation of optical networks and sensing systems that will power ICT-based social solutions for years. We advance globally acknowledged innovation by engaging in visionary theoretical research, pioneering experiments, and leading technology field trials. Our work not only foresees the future but also transforms it into today’s reality.
Forget passwords—identity verification can now be accomplished with the touch of a finger or in the blink of an eye as the biometrics field expands to encompass new techniques and application areas.
We demonstrate fiber optic sensing systems in a distributed fiber sensor network built on existing telecom infrastructure to detect temperature, acoustic effects, vehicle traffic, etc. Measurements are also demonstrated with different network topologies and simultaneously sensing four fiber routes with one system.
We are the first to investigate a novel problem, called distributed fiber optic sensor placement, in the context of Infrastructure-as-a-Sensor. We propose an ILP-based optimal solution and a close-to-optimal heuristic solution, both of which aim at minimizing the cost of sensors.
To the best of our knowledge, we present the first underground fiber cable position detection methods using distributed fiber optic sensing (DFOS) technology. Meter level localization accuracy is achieved in the results.
Biometric authentication is the recognition of human identity via unique anatomical features. The development of novel methods parallels widespread application by consumer devices, law enforcement, and access control. In particular, methods based on finger veins, as compared to face and fingerprints, obviate privacy concerns and degradation due to wear, age, and obscuration. However, they are two-dimensional (2D) and are fundamentally limited by conventional imaging and tissue-light scattering. In this work, for the first time, to the best of our knowledge, we demonstrate a method of three-dimensional (3D) finger vein biometric authentication based on photoacoustic tomography. Using a compact photoacoustic tomography setup and a novel recognition algorithm, the advantages of 3D are demonstrated via biometric authentication of index finger vessels with false acceptance, false rejection, and equal error rates <1.23%, <9.27%, and <0.13%, respectively, when comparing one finger, a false acceptance rate improvement >10× when comparing multiple fingers, and <0.7% when rotating fingers ±30.
We demonstrate an anti-spoofing face recognition system that is able to differentiate real human face with 3D printed materials. Face images captured in infrared structure light are analyzed for surface materials and spatial structure.
In this study, we explored surface-enhanced Raman spectroscopy (SERS) for analyzing red wine through several facile sample preparations. These approaches involved the direct analysis of red wine with Raman spectroscopy and the direct incubation of red wine with silver nanoparticles (i.e., AgNPs) and a reproducible SERS substrate, the AgNP mirror, previously developed by our group. However, as previously reported for red wine analysis, the signals obtained through these approaches were either due to interference of the fluorescence exhibited by pigments or mainly attributed to a DNA fraction, adenine. Therefore, an innovative approach was developed using solvent extraction to provide more characteristic information that is beneficial for wine chemical profiling and discrimination. Signature peaks in the wine extract spectra were found to match those of condensed tannins, resveratrol, anthocyanins, gallic acid, and catechin, which indicated that SERS combined with extraction is an innovative method for profiling wine chemicals and overcoming well-known challenges in red wine analysis. Based on this approach, we have successfully differentiated three red wines and demonstrated the possible relation between the overall intensity of wine spectra and the ratings. Since the wine chemical profile is closely related to the grape species, wine quality, and wine authentication, the SERS approach to obtain rich spectral information from red wine could advance wine chemical analysis.
We demonstrate the experimental implementation of photonic neural network for fiber nonlinearity compensation over a 10,080 km trans-pacific transmission link. Q-factor improvement of 0.51 dB is achieved with only 0.06 dB lower than numerical simulations.
We demonstrated for the first time that geographic locations on deployed fiber cables can be determined accurately by using OTDR distances. The method involves vibration stimulation near deployed cables and distributed fiber optical sensing technology.
We propose reusing existing optical cables in metropolitan networks for distributed sensing using a bidirectional, dual-band architecture where communications and sensing signals can coexist with weak interaction on the same optical fiber.
Princeton Office
4 Independence Way, Suite 200
Princeton, NJ 08540
+1 609-520-1555
San Jose Office
2033 Gateway Place, Suite 200
San Jose, CA 95110
+1 408-863-6007
NEC Laboratories America, Inc. (NEC Labs) is the US-based center for NEC Corporation’s global network of corporate research laboratories. Our diverse research groups collaborate with industry, academia and governments to provide disruptive solutions to complex problems. A leader in the integration of IT and network technologies with more than 100 years of expertise, NEC provides a combination of products and solutions that cross-utilize the company’s experience and global resources to meet the complex and ever-changing needs of its customers.