Optical Networking and SensingRead our Optical Networking and Sensing publications from our team of researchers. We are leading world-class research into the next generation of optical networks and sensing systems that will power ICT-based social solutions for years. We advance globally acknowledged innovation by engaging in visionary theoretical research, pioneering experiments, and leading technology field trials. Our work not only foresees the future but also transforms it into today’s reality.

Posts

Field Trial of Coexistence and Simultaneous Switching of Real-time Fiber Sensing and 400GbE Supporting DCI and 5G Mobile Services

Coexistence of real-time constant-amplitude distributed acoustic sensing (DAS) and 400GbE signals is verified by field trial over metro fibers, demonstrating no QoT impact during co-propagation and supporting preemptive DAS-informed optical path switching before link failure

Polarization Sensing Using Polarization Rotation Matrix Eigenvalue Method

Polarization-based, multi-span sensing over a link with reflection-back circuits is demonstrated experimentally. By measuring rotation matrices instead of just monitoring polarization, a 35 dB extinction in localization is achieved regardless of the disturbance magnitude.

DAS over 1,007-km Hybrid Link with 10-Tb/s DP-16QAM Co-propagation using Frequency-Diverse Chirped Pulses

We report the first distributed acoustic sensing (DAS) experiment with over >1,000 km reach on a hybrid link comprising of a mixture of field and lab fibers with bi-directional inline Raman amplification after each span. We used 20× frequency-diversity chirped-pulses for the probe signal,and recovered the Rayleigh backscatter using a coherent receiver with correlation detection and diversity combining. A measurand resolution of ∼100 pϵ/√ Hz at a gauge length of 20 meters achieved in the offline experiment. We also demonstrate the first real-time FPGA implementation of chirped-pulse DAS without frequency diversity over a range of 210 km.

Ambient Noise based Weakly Supervised Manhole Localization Methods over Deployed Fiber Networks

We present a manhole localization method based on distributed fiber optic sensing and weakly supervised machine learning techniques. For the first time to our knowledge, ambient environment data is used for underground cable mapping with the promise of enhancing operational efficiency and reducing field work. To effectively accommodate the weak informativeness of ambient data, a selective data sampling scheme and an attention-based deep multiple instance classification model are adopted, which only requires weakly annotated data. The proposed approach is validated on field data collected by a fiber sensing system over multiple existing fiber networks.

Drone Detection and Localization using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology

In recent years, the widespread use of drones has led to serious concerns about safety and privacy. Drone detection using microphone arrays has proven to be a promising method. However, it is challenging for microphones to serve large-scale applications due to the issues of synchronization, complexity, and data management. Moreover, distributed acoustic sensing (DAS) using optical fibers has demonstrated its advantages in monitoring vibrations over long distances but does not have the necessary sensitivity for weak airborne acoustics. In this work, we present, to the best of our knowledge, the first fiber-optic quasi-distributed acoustic sensing demonstration for drone surveillance. We develop enhanced fiber-optic acoustic sensors (FOASs) for DAS to detect drone sound. The FOAS shows an ultra-high measured sensitivity of −101.21 re. 1rad/µPa, as well as the capability for high-fidelity speech recovery. A single DAS can interrogate a series of FOASs over a long distance via optical fiber, enabling intrinsic synchronization and centralized signal processing.We demonstrate the field test of drone detection and localization by concatenating four FOASs as DAS. Both the waveforms and spectral features of the drone sound are recognized. With acoustic field mapping and data fusion, accurate drone localization is achieved with a root-mean-square error (RMSE) of 1.47 degrees. This approach holds great potential in large-scale sound detection applications, such as drone detection or city event monitoring.

Distributed fiber optic sensing over readily available telecom fiber networks

Distributed Fiber Optic Sensing (DFOS) systems rely on measuring and analyzing different properties of the backscattered light of an optical pulse propagating along a fiber cable. DFOS systems can measure temperature, strain, vibrations, or acoustic excitations on the fiber cable and to their unique specifications, they have many applications and advantages over competing technologies. In this talk we will focus on the challenges and applications of DFOS systems using outdoor grade telecom fiber networks instead of standard indoor or some specialty fiber cables.

Using Global Fiber Networks for Environmental Sensing

We review recent advances in distributed fiber optic sensing (DFOS) and their applications. The scattering mechanisms in glass, which are exploited for reflectometry-based DFOS, are Rayleigh, Brillouin, and Raman scatterings. These are sensitive to either strain and/or temperature, allowing optical fiber cables to monitor their ambient environment in addition to their conventional role as a medium for telecommunications. Recently, DFOS leveraged technologies developed for telecommunications, such as coherent detection, digital signal processing, coding, and spatial/frequency diversity, to achieve improved performance in terms of measurand resolution, reach, spatial resolution, and bandwidth. We review the theory and architecture of commonly used DFOS methods. We provide recent experimental and field trial results where DFOS was used in wide-ranging applications, such as geohazard monitoring, seismic monitoring, traffic monitoring, and infrastructure health monitoring. Events of interest often have unique signatures either in the spatial, temporal, frequency, or wavenumber domains. Based on the temperature and strain raw data obtained from DFOS, downstream postprocessing allows the detection, classification, and localization of events. Combining DFOS with machine learning methods, it is possible to realize complete sensor systems that are compact, low cost, and can operate in harsh environments and difficult-to-access locations, facilitating increased public safety and smarter cities.

Availability Analysis for Reliable Distributed Fiber Optic Sensors Placement

We perform the availability analysis for various reliable distributed fiber optic sensor placement schemes in the circumstances of multiple failures. The study can help the network carriers to select the optimal protection scheme for their network sensing services, considering both service availability and hardware cost.

Distributed Optical Fiber Sensing Using Specialty Optical Fibers

Distributed fiber optic sensing systems use long section of optical fiber as the sensing media. Therefore, the fiber characteristics determines the sensing capability and performance. In this presentation, various types of specialty optical fibers and their sensing applications will be introduced and discussed.

A Multi-sensor Feature Fusion Network Model for Bearings Grease Life Assessment in Accelerated Experiments

This paper presents a multi-sensor feature fusion (MSFF) neural network comprised of two inception layer-type multiple channel feature fusion (MCFF) networks for both inner-sensor and cross-sensor feature fusion in conjunction with a deep residual neural network (ResNet) for accurate grease life assessment and bearings health monitoring. The single MCFF network is designed for low-level feature extraction and fusion of either vibration or acoustic emission signals at multi-scales. The concatenation of MCFF networks serves as a cross-sensor feature fusion layer to combine extracted features from both vibration and acoustic emission sources. A ResNet is developed for high-level feature extraction from the fused feature maps and prediction. Besides, to handle the large volume of collected data, original time-series data are transformed to the frequency domain with different sampling intervals and targeted ranges. The proposed MSFF network outperforms other models based on different fusion methods, fully connected network predictors and/or a single sensor source.