Optical Networking and Sensing

Our Optical Networking and Sensing department is leading world-class research into the next generation of optical networks and sensing systems that will power ICT-based social solutions for years. From forward-looking theoretical studies to cutting-edge experiments to world- and industry-first technology field trials, we deliver globally recognized innovation that looks into the future and translates it into present reality. Read our optical networking and sensing news and publications from our team of researchers.

Posts

Semi-Automatic Line-System Provisioning with Integrated Physical-Parameter-Aware Methodology: Field Verification and Operational Feasibility

We propose methods and architecture to conduct measurements and optimize newly installed optical fiber line systems semi-automatically using integrated physics-aware technologies in a data center interconnection (DCI) transmission scenario. We demonstrate, for the first time, digital longitudinal monitoring (DLM) and optical line system (OLS) physical parameter calibration working together in real-time to extract physical link parameters for transmission performance optimization. Our methodology has the following advantages over traditional design: minimized footprint at the user site, accurate estimate of necessary optical network characteristics via complementary telemetry technologies, and ability to conduct all operation work from remotely. The last feature is crucial as remote operation personnel can implement network design settings for immediate response to quality of transmission (QoT) degradation and reverting in case of unforeseen problems. We successfully completed the semi-automatic line system provisioning over field fiber networks facilities at Duke University, Durham, NC. The tasks of parameter retrieval, equipment setting optimization, and system setup/provisioning were completed within 1 hour. The field operation was supervised by on-duty personnel who can access the system remotely from different timezones. By comparing Q-factor estimates calculated by the extracted link parameters with measured results from 400G transceivers, we confirmed our methodology has a reduction in the QoT prediction errors overexisting design.

4D Optical Link Tomography: First Field Demonstration of Autonomous Transponder Capable of Distance, Time, Frequency, and Polarization-Resolved Monitoring

We report the first field demonstration of 4D link tomography using a commercial transponder, which offers distance, time, frequency, and polarization-resolved monitoring. This scheme enables autonomous transponders that identify locations of multiple QoT degradation causes.

Field Implementation of Fiber Cable Monitoring for Mesh Networks with Optimized Multi-Channel Sensor Placement

We develop a heuristic solution to effectively optimize the placement of multi-channel distributed fiber optic sensors in mesh optical fiber cable networks. The solution has beenimplemented in a field network to provide continuous monitoring.

Inline Fiber Type Identification using In-Service Brillouin Optical Time Domain Analysis

We proposed the use of BOTDA as a monitoring tool to identify fiber types present in deployed hybrid-span fiber cables, to assist in network planning, setting optimal launch powers, and selecting correct modulation formats.

Modeling the Input Power Dependency in Transceiver BER-ONSR for QoT Estimation

We propose a method to estimate the input power dependency of the transceiver BER-OSNR characteristic. Experiments using commercial transceivers show that estimation error in Q-factor is less than 0.2 dB.

Multi-Span Optical Power Spectrum Prediction using ML-based EDFA Models and Cascaded Learning

We implement a cascaded learning framework using component-level EDFA models for optical power spectrum prediction in multi-span networks, achieving a mean absolute error of 0.17 dB across 6 spans and 12 EDFAs with only one-shot measurement.

Optical Line Physical Parameters Calibration in Presence of EDFA Total Power Monitors

A method is proposed in order to improve QoT-E by calibrating the physical model parameters of an optical link post-installation, using only total power monitors integrated into the EDFAs and an OSA at the receiver.

Optical Network Anomaly Detection and Localization Based on Forward Transmission Sensing and Route Optimization

We introduce a novel scheme to detect and localize optical network anomaly using forward transmission sensing, and develop a heuristic algorithm to optimize the route selection. The performance is verified via simulations and network experiments.

Distributed Fiber Optic Sensing for Fault Localization Caused by Fallen Tree Using Physics-informed ResNet

Falling trees or their limbs can cause power lines to break or sag, sometimes resulting in devastating wildfires. Conventional protections such as circuit breakers, overcurrent relays and automatic circuit reclosers may clear short circuits caused by tree contact, but they may not detect cases where the conductors remain intact or a conducting path is not sufficient to create a full short circuit. In this paper, we introduce a novel, non-intrusive monitoring technique that detects and locates fallen trees, even if a short circuit is not triggered. This method employs distributed fiber optic sensing (DFOS) to detect vibrations along the power distribution line where corresponding fiber cables are installed. A physics-informed ResNet model is then utilized to interpret this information and accurately locate fallen trees, which sets it apart from traditional black-box predictions of machine learning algorithms. Our real-scale lab tests demonstrate highly accurate and reliable fallen tree detection and localization.

Field Trial of Coexistence and Simultaneous Switching of Real-Time Fiber Sensing and Coherent 400 GbE in a Dense Urban Environment

Recent advances in optical fiber sensing have enabled telecom network operators to monitor their fiber infrastructure while generating new revenue in various application scenarios, including data center interconnect, public safety, smart cities, and seismic monitoring. However, given the high utilization of fiber networks for data transmission, it is undesirable to allocate dedicated fiber strands solely for sensing purposes. Therefore, it is crucial to ensure the reliable coexistence of fiber sensing and communication signals that co-propagate on the same fiber. In this paper, we conduct field trials in a reconfigurable optical add-drop multiplexer (ROADM) network enabled by the PAWR COSMOS testbed, utilizing metro area fibers in Manhattan, New York City. We verify the coexistence of real-time constant-amplitude distributed acoustic sensing (DAS), coherent 400 GbE, and analog radio-over-fiber (ARoF) signals. Measurement results obtained from the field trial demonstrate that the quality of transmission (QoT) of the coherent 400 GbE signal remains unaffected during co-propagation with DAS and ARoF signals in adjacent dense wavelength-division multiplexing (DWDM) channels. In addition, we present a use case of this coexistence system supporting preemptive DAS-informed optical path switching before link failure.