From the Internet backbone to the home, optics and photonics form the foundation of modern ICT infrastructure.  In the optical networking and sensing department, we are leading world-class research into the next generation of optical networks and sensing systems that will power ICT-based social solutions for years. From forward-looking theoretical studies to cutting-edge experiments to world- and industry-first technology field trials, we deliver globally recognized innovation that looks into the future and translates it into present reality.

Posts

Utility Pole Localization by Learning From Ambient Traces on Distributed Acoustic Sensing

Utility pole localization by learning from ambient traces on distributed acoustic sensing Utility pole detection and localization is the most fundamental application in aerial-optic cables using distributed acoustic sensing (DAS). The existing pole localization method recognizes the hammer knock signal on DAS traces by learning from knocking vibration patterns. However, it requires many efforts for data collection such as knocking every pole and manually labeling the poles’ locations, making this labor-intensive solution expensive, inefficient, and highly error prone. In this paper, we propose a pole localization solution by learning the ambient data collected from a DAS system, which are vibration patterns excited by random ambient events, such as wind and nearby traffic. In detail, we investigate a universal framework for learning representations of ambient data in the frequency domain by contrastive learning of the similarity of low and high-frequency series. A Gaussian-based data reweighting kernel is employed for eliminating the effect of the label noise. Experimental results demonstrate the proposed methods outperform the existing contrastive learning methods on the real-world DAS ambient dataset.

Real-Time Blind Source Separation with Integrated Photonics for Wireless Signals

Real-Time Blind Source Separation with Integrated Photonics for Wireless Signals We demonstrate, for the first time, real-time blind source separation of interfering GHz transmitters using photonic weights controlled by an RF-System-on-Chip FPGA. This analog system achieves multi-antenna signal separation with millisecond execution latency.

Explore Benefits of Distributed Fiber Optic Sensing for Optical Network Service Providers

Explore Benefits of Distributed Fiber Optic Sensing for Optical Network Service Providers We review various applications of distributed fiber optic sensing (DFOS) and machine learning (ML) technologies that particularly benefit telecom operators’ fiber networks and businesses. By leveraging relative phase shift of the reflectance of coherent Rayleigh, Brillouin and Raman scattering of light wave, the ambient environmental vibration, acoustic effects, temperature and fiber/cable strain can be detected. Fiber optic sensing technology allows optical fiber to support sensing features in addition to its conventional role to transmit data in telecommunications. DFOS has recently helped telecom operators by adding multiple sensing features and proved feasibility of co-existence of sensing and communication systems on same fiber. We review the architecture of DFOS technique and show examples where optical fiber sensing helps enhance network operation efficiency and create new services for customers on deployed fiber infrastructures, such as determination of cable locations, cable cut prevention, perimeter intrusion detection and networked sensing applications. In addition, edge AI platform allows data processing to be conducted on-the-fly with low latency. Based on discriminative spatial-temporal signatures of different events of interest, real-time processing of the sensing data from the DFOS system provides results of the detection, classification and localization immediately.

Improvement of resilience of submarine networks based on fiber sensing

Improvement of resilience of submarine networks based on fiber sensing Simultaneous phase and polarization sensing with span length resolution using the supervisory path is demonstrated. It is shown that by measuring polarization rotation matrix of the return paths, instead of monitoring only the state of polarization, location of the polarization disturbance can be determined even for large polarization rotations. By using the polarization rotation matrices, the phase and polarization disturbances are successfully decoupled. How the existing supervisory system and sensing can coexist in new SDM cables that utilizes pump sharing is discussed.

Data-driven Modelling of EDFAs by Neural Networks

Data-driven Modelling of EDFAs by Neural Networks Dependence of EDFA gain shape on input power and input spectrum shape is modelled using a simple neural network-based architecture for amplifiers with different gains and output powers. The model can predict the gain within ±0.1 dB. Even though the model has good success predicting the performance of the particular EDFA it is trained with, it is not as successful when used to predict a different EDFA, or even the same EDFA with a different pump power. However, retraining the model with a small amount of supplementary data from a second EDFA makes the model able to predict the performance of the second EDFA with little loss in performance.

Polarization Sensing Using Polarization Rotation Matrix Eigenvalue Method

Polarization Sensing Using Polarization Rotation Matrix Eigenvalue Method Polarization-based, multi-span sensing over a link with reflection-back circuits is demonstrated experimentally. By measuring rotation matrices instead of just monitoring polarization, a 35 dB extinction in localization is achieved regardless of the disturbance magnitude.

Field Trial of Coexistence and Simultaneous Switching of Real-time Fiber Sensing and 400GbE Supporting DCI and 5G Mobile Services

Field Trial of Coexistence and Simultaneous Switching of Real-time Fiber Sensing and 400GbE Supporting DCI and 5G Mobile Services Coexistence of real-time constant-amplitude distributed acoustic sensing (DAS) and 400GbE signals is verified by field trial over metro fibers, demonstrating no QoT impact during co-propagation and supporting preemptive DAS-informed optical path switching before link failure

DAS over 1,007-km Hybrid Link with 10-Tb/s DP-16QAM Co-propagation using Frequency- Diverse Chirped Pulses

DAS over 1,007-km Hybrid Link with 10-Tb/s DP-16QAM Co-propagation using Frequency- Diverse Chirped Pulses We report the first distributed acoustic sensing (DAS) experiment with over >1,000 km reach on a hybrid link comprising of a mixture of field and lab fibers with bi-directional inline Raman amplification after each span. We used 20× frequency-diversity chirped-pulses for the probe signal,and recovered the Rayleigh backscatter using a coherent receiver with correlation detection and diversity combining. A measurand resolution of ∼100 pϵ/√ Hz at a gauge length of 20 meters achieved in the offline experiment. We also demonstrate the first real-time FPGA implementation of chirped-pulse DAS without frequency diversity over a range of 210 km.

Drone Detection and Localization using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology

Drone Detection and Localization using Enhanced Fiber-Optic Acoustic Sensor and Distributed Acoustic Sensing Technology In recent years, the widespread use of drones has led to serious concerns about safety and privacy. Drone detection using microphone arrays has proven to be a promising method. However, it is challenging for microphones to serve large-scale applications due to the issues of synchronization, complexity, and data management. Moreover, distributed acoustic sensing (DAS) using optical fibers has demonstrated its advantages in monitoring vibrations over long distances but does not have the necessary sensitivity for weak airborne acoustics. In this work, we present, to the best of our knowledge, the first fiber-optic quasi-distributed acoustic sensing demonstration for drone surveillance. We develop enhanced fiber-optic acoustic sensors (FOASs) for DAS to detect drone sound. The FOAS shows an ultra-high measured sensitivity of −101.21 re. 1rad/µPa, as well as the capability for high-fidelity speech recovery. A single DAS can interrogate a series of FOASs over a long distance via optical fiber, enabling intrinsic synchronization and centralized signal processing.We demonstrate the field test of drone detection and localization by concatenating four FOASs as DAS. Both the waveforms and spectral features of the drone sound are recognized. With acoustic field mapping and data fusion, accurate drone localization is achieved with a root-mean-square error (RMSE) of 1.47 degrees. This approach holds great potential in large-scale sound detection applications, such as drone detection or city event monitoring.

Ambient Noise based Weakly Supervised Manhole Localization Methods over Deployed Fiber Networks

Ambient Noise based Weakly Supervised Manhole Localization Methods over Deployed Fiber Networks We present a manhole localization method based on distributed fiber optic sensing and weakly supervised machine learning techniques. For the first time to our knowledge, ambient environment data is used for underground cable mapping with the promise of enhancing operational efficiency and reducing field work. To effectively accommodate the weak informativeness of ambient data, a selective data sampling scheme and an attention-based deep multiple instance classification model are adopted, which only requires weakly annotated data. The proposed approach is validated on field data collected by a fiber sensing system over multiple existing fiber networks.