Optimization is the process of making a system, design, or decision as effective, functional, or efficient as possible. It involves selecting the best option from a set of alternatives to achieve a specific goal or to maximize or minimize an objective function, subject to certain constraints.

Posts

Variational methods for Learning Multilevel Genetic Algorithms using the Kantorovich Monad

Levels of selection and multilevel evolutionary processes are essential concepts in evolutionary theory, and yet there is a lack of common mathematical models for these core ideas. Here, we propose a unified mathematical framework for formulating and optimizing multilevel evolutionary processes and genetic algorithms over arbitrarily many levels based on concepts from category theory and population genetics. We formulate a multilevel version of the Wright-Fisher process using this approach, and we show that this model can be analyzed to clarify key features of multilevel selection. Particularly, we derive an extended multilevel probabilistic version of Price’s Equation via the Kantorovich Monad, and we use this to characterize regimes of parameter space within which selection acts antagonistically or cooperatively across levels. Finally, we show how our framework can provide a unified setting for learning genetic algorithms (GAs), and we show how we can use a Variational Optimization and a multi-level analogue of coalescent analysis to fit multilevel GAs to simulated data.

ECO-LLM: LLM-based Edge Cloud Optimization

AI/ML techniques have been used to solve systems problems, but their applicability to customize solutions on-the-fly has been limited. Traditionally, any customization required manually changing the AI/ML model or modifying the code, configuration parameters, application settings, etc. This incurs too much time and effort, and is very painful. In this paper, we propose a novel technique using Generative Artificial Intelligence (GenAI) technology, wherein instructions can be provided in natural language and actual code to handle any customization is automatically generated, integrated and applied on-the-fly. Such capability is extremely powerful since it makes customization of application settings or solution techniques super easy. Specifically, we propose ECO-LLM (LLM-based Edge Cloud Optimization), which leverages Large Language Models (LLM) to dynamically adjust placement of application tasks across edge and cloud computing tiers, in response to changes in application workload, such that insights are delivered quickly with low cost of operation (systems problem). Our experiments with real-world video analytics applications i.e. face recognition, human attributes detection and license plate recognition show that ECO-LLM is able to automatically generate code on-the-fly and adapt placement of application tasks across edge and cloud computing tiers. We note that the trigger workload (to switch between edge and cloud) for ECO-LLM is exactly the same as the baseline (manual) and actual placement performed by ECO-LLM is only slightly different i.e. on average (across 2 days) only 1.45% difference in human attributes detection and face recognition, and 1.11% difference in license plate recognition. Although we tackle this specific systems problem in this paper, our proposed GenAI-based technique is applicable to solve other systems problems too.

Local and Global Optimization Methods for Optical Line Control Based on Quality of Transmission

The ever-increasing demand for data traffic in recent decades has pushed network operators to give importance to the aspect of infrastructure control to facilitate its scalability and maximize its capacity. A generic lightpath (LP) is deployed starting from a traffic request between a given pair of nodes in a network. LPs are operated in the network based on an estimate of the quality of transmission (QoT), which is derived from the physical layer characteristics of a selected route. Regardless of the model used to estimate QoT, it is necessary to calibrate themodel to maximize its accuracy and define minimum design margins. The model calibration process depends significantly on the type of data that can be collected in the field (i.e., type of metric, resolution) and therefore on the available monitoring devices. In this work, a systematic evaluation of the QoT estimation is carried out on a multi-span erbium-doped-fiber-amplified optical line system (OLS) using in the first case only total power monitors and in the second experimentally emulating optical channel monitors (OCMs). Given the type of monitoring devices available, three different physical models are calibrated, and six optimization methods are used to define the optimal configuration of the target gain and tilt parameters of the optical amplifiers, jointly optimizing the working point of all amplifiers (global approach) or proceeding span by span (local approach). Subsequently, the OLS was set in each configuration obtained, and the generalized signal-to-noise ratio (GSNR) profile was measured at the end.

Battery Optimal Approach to Demand Charge Reduction in Behind-The-Meter Energy Management Systems

Large monthly demand charge of commercial and industrial entities is a major problem for their economical business. Utilizing a battery by behind-the-meter Energy Management Systems (EMS) has been seen as a solution to demand charge reduction. In state-of-the-art approaches, the EMS maintains sufficient energy for the unexpected large demands and uses the battery to meet them. However, large amount of energy stored in the battery may increase the average battery State-of-Charge (SoC) and cause degradation in battery capacity. Therefore, the current approaches of demand charge reduction significantly shortens the battery lifetime which is not economical. In this paper, we propose a novel battery optimal approach to reduce the monthly demand charges. In our approach, load profile of the previous month is used by daily optimizations to shave daily power demands while considering the battery lifetime model. Evaluated daily demand thresholds and load profile are statistically analyzed to cluster different types of day. Hence, it helps the EMS to find the typical daily load profile and appropriate monthly demand threshold for the entity. The performance of our approach has been analyzed and compared to the state-of-the-arts by experimenting on multiple real-life load profiles and battery configurations. The results show significant reduction of 16% in annual average battery SoC that increases the battery lifetime from 4.1 to 5.6 years while achieving up to 13.4% demand charge reduction.