Orbital Angular Momentum refers to the rotational motion of an object around an axis or a point. In the context of quantum mechanics, it is a quantum property associated with the motion of a particle in an orbit around another object, such as an electron orbiting a nucleus. The orbital angular momentum quantum number is an important quantum characteristic that quantizes the amount of angular momentum in discrete units.


Coherent optical wireless communication link employing orbital angular momentum multiplexing in a ballistic and diffusive scattering medium

We experimentally investigate the scattering effect on an 80 Gbit/s orbital angular momentum (OAM) multiplexed optical wireless communication link. The power loss, mode purity, cross talk, and bit error rate performance are measured and analyzed for different OAM modes under scattering levels from ballistic to diffusive regions. Results show that (i) power loss is the main impairment in the ballistic scattering, while the mode purities of different OAM modes are not significantly affected; (ii) in the diffusive scattering, however, the performance of an OAM-multiplexed link further suffers from the increased cross talk between the different OAM modes.

The Resilience of Hermite- and Laguerre-Gaussian Modes in Turbulence

Vast geographical distances in Africa are a leading cause for the so-called digital divide due to the high cost of installing fiber. Free-space optical (FSO) communications offer a convenient and higher bandwidth alternative to point-to-point radio microwave links, with the possibility of repurposing existing infrastructure. Unfortunately, the range of high-bandwidth FSO remains limited. While there has been extensive research into an optimal mode set for FSO to achieve maximum data throughput by mode division multiplexing, there has been relatively little work investigating optical modes to improve the resilience of FSO links. Here, we experimentally show that a carefully chosen subset of Hermite-Gaussian modes is more resilient to atmospheric turbulence than similar Laguerre-Gauss beams, with a predicted upper bound increase in propagation distance of 167% at a mode-dependent loss of 50%.