Pennsylvania State University (Penn State) is a top U.S. research university with strengths in engineering, agriculture, cybersecurity, and health sciences. Its interdisciplinary approach powers innovation across campuses and research institutes. NEC Labs America collaborates with the Pennsylvania State University on cross-modal AI, medical imaging analytics, and video object detection in clinical applications. Please read about our latest news and collaborative publications with Pennsylvania State University.

Posts

Humanizing the Machine: Proxy Attacks to Mislead LLM Detectors

The advent of large language models (LLMs) has revolutionized the field of text generation, producing outputs that closely mimic human-like writing. Although academic and industrial institutions have developed detectors to prevent the malicious usage of LLM-generated texts, other research has doubt about the robustness of these systems. To stress test these detectors, we introduce a humanized proxy-attack (HUMPA) strategy that effortlessly compromises LLMs, causing them to produce outputs that align with human-written text and mislead detection systems. Our method attacks the source model by leveraging a reinforcement learning (RL) fine-tuned humanized small language model (SLM) in the decoding phase. Through an in-depth analysis, we demonstrate that our attack strategy is capable of generating responses that are indistinguishable to detectors, preventing them from differentiating between machine-generated and human-written text. We conduct systematic evaluations on extensive datasets using proxy-attacked open-source models, including Llama2-13B, Llama3-70B, and Mixtral-8×7B in both white- and black-box settings. Our findings show that the proxy-attack strategy effectively deceives the leading detectors, resulting in an average AUROC drop of 70.4% across multiple datasets, with a maximum drop of 95.0% on a single dataset. Furthermore, in cross-discipline scenarios, our strategy also bypasses these detectors, leading to a significant relative decrease of up to 90.9%, while in cross-language scenario, the drop reaches 91.3%. Despite our proxy-attack strategy successfully bypassing the detectors with such significant relative drops, we find that the generation quality of the attacked models remains preserved, even within a modest utility budget, when compared to the text produced by the original, unattacked source model.

InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration (EMNLP 2024)

Large Language Models (LLMs) have achieved exceptional capabilities in open generation across various domains, yet they encounter difficulties with tasks that require intensive knowledge. To address these challenges, methods for integrating knowledge have been developed, which augment LLMs with domain-specific knowledge graphs through external modules. These approaches, however, face data inefficiency issues as they necessitate the processing of both known and unknown knowledge for fine-tuning. Thus, our research focuses on a novel problem: efficiently integrating unknown knowledge into LLMs without unnecessary overlap of known knowledge. A risk of introducing new knowledge is the potential forgetting of existing knowledge. To mitigate this risk, we propose the innovative InfuserKI framework. This framework employs transformer internal states to determine when to enrich LLM outputs with additional information, effectively preventing knowledge forgetting. Performance evaluations using the UMLS-2.5k and MetaQA domain knowledge graphs reveal that InfuserKI not only successfully integrates new knowledge but also outperforms state-of-the-art baselines, reducing knowledge forgetting by 9% and 6%, respectively.

InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration (VLDB 2024)

Though Large Language Models (LLMs) have shown remarkable open-generation capabilities across diverse domains, they struggle with knowledge-intensive tasks. To alleviate this issue, knowledge integration methods have been proposed to enhance LLMs with domain-specific knowledge graphs using external modules. However, they suffer from data inefficiency as they require both known and unknown knowledge for fine-tuning. Thus, we study a novel problem of integrating unknown knowledge into LLMs efficiently without unnecessary overlap of known knowledge. Injecting new knowledge poses the risk of forgetting previously acquired knowledge. To tackle this, we propose a novel Infuser-Guided Knowledge Integration (InfuserKI) framework that utilizes transformer internal states to determine whether to enhance the original LLM output with additional information, thereby effectively mitigating knowledge forgetting. Evaluations on the UMLS-2.5k and MetaQA domain knowledge graphs demonstrate that InfuserKI can effectively acquire new knowledge and outperform state-of-the-art baselines by 9% and 6%, respectively, in reducing knowledge forgetting.

Dynamic Causal Discovery in Imitation Learning

Imitation learning, which learns agent policy by mimicking expert demonstration, has shown promising results in many applications such as medical treatment regimes and self-driving vehicles. However, it remains a difficult task to interpret control policies learned by the agent. Difficulties mainly come from two aspects: 1) agents in imitation learning are usually implemented as deep neural networks, which are black-box models and lack interpretability; 2) the latent causal mechanism behind agents’ decisions may vary along the trajectory, rather than staying static throughout time steps. To increase transparency and offer better interpretability of the neural agent, we propose to expose its captured knowledge in the form of a directed acyclic causal graph, with nodes being action and state variables and edges denoting the causal relations behind predictions. Furthermore, we design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs. Concretely, we conduct causal discovery from the perspective of Granger causality and propose a self-explainable imitation learning framework, CAIL. The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner. After the model is learned, we can obtain causal relations among states and action variables behind its decisions, exposing policies learned by it. Experimental results on both synthetic and real-world datasets demonstrate the effectiveness of the proposed CAIL in learning the dynamic causal graphs for understanding the decision-making of imitation learning meanwhilemaintaining high prediction accuracy.

AutoTCL: Automated Time Series Contrastive Learning with Adaptive Augmentations

Read AutoTCL: Automated Time Series Contrastive Learning with Adaptive Augmentations publication. Modern techniques like contrastive learning have been effectively used in many areas, including computer vision, natural language processing, and graph-structured data. Creating positive examples that assist the model in learning robust and discriminative representations is a crucial stage in contrastive learning approaches. Usually, preset human intuition directs the selection of relevant data augmentations. Due to patterns that are easily recognized by humans, this rule of thumb works well in the vision and language domains. However, it is impractical to visually inspect the temporal structures in time series. The diversity of time series augmentations at both the dataset and instance levels makes it difficult to choose meaningful augmentations on the fly. Thus, although prevalent, contrastive learning with data augmentation has been less studied in the time series domain. In this study, we address this gap by analyzing time series data augmentation using information theory and summarizing the most commonly adopted augmentations in a unified format. We then propose a parameterized augmentation method, AutoTCL, which can be adaptively employed to support time series representation learning. The proposed approach is encoder-agnostic, allowing it to be seamlessly integrated with different backbone encoders. Experiments on benchmark datasets demonstrate the highly competitive results of our method, with an average 10.3% reduction in MSE and 7.0% in MAE over the leading baselines.

Exploring Compositional Visual Generation with Latent Classifier Guidance

Diffusion probabilistic models have achieved enormous success in the field of image generation and manipulation. In this paper, we explore a novel paradigm of using the diffusion model and classifier guidance in the latent semantic space for compositional visual tasks. Specifically, we train latent diffusion models and auxiliary latent classifiers to facilitate non-linear navigation of latent representation generation for any pre-trained generative model with a semantic latent space. We demonstrate that such conditional generation achieved by latent classifier guidance provably maximizes a lower bound of the conditional log probability during training. To maintain the original semantics during manipulation, we introduce a new guidance term, which we show is crucial for achieving compositionality. With additional assumptions, we show that the non-linear manipulation reduces to a simple latent arithmetic approach. We show that this paradigm based on latent classifier guidance is agnostic to pre-trained generative models, and present competitive results for both image generation and sequential manipulation of real and synthetic images. Our findings suggest that latent classifier guidance is a promising approach that merits further exploration, even in the presence of other strong competing methods.

Dynamic Causal Discovery in Imitation Learning

Using deep reinforcement learning (DRL) to recover expert policies via imitation has been found to be promising in a wide range of applications. However, it remains a difficult task to interpret the control policy learned by the agent. Difficulties mainly come from two aspects: 1) agents in DRL are usually implemented as deep neural networks (DNNs), which are black-box models and lack in interpretability, 2) the latent causal mechanism behind agents’ decisions may vary along the trajectory, rather than staying static throughout time steps. To address these difficulties, in this paper, we propose a self-explaining imitation framework, which can expose causal relations among states and action variables behind its decisions. Specifically, a dynamic causal discovery module is designed to extract the causal graph basing on historical trajectory and current states at each time step, and a causality encoding module is designed to model the interactions among variables with discovered causal edges. After encoding causality into variable embeddings, a prediction model conducts the imitation learning on top of obtained representations. These three components are trained end-to-end, and discovered causal edges can provide interpretations on rules captured by the agent. Comprehensive experiments are conducted on the simulation dataset to analyze its causal discovery capacity, and we further test it on a real-world medical dataset MIMIC-IV. Experimental results demonstrate its potential of providing explanations behind decisions.

InfoGCL: Information-Aware Graph Contrastive Learning

InfoGCL: Information-Aware Graph Contrastive Learning Various graph contrastive learning models have been proposed to improve the performance of tasks on graph datasets in recent years. While effective and prevalent, these models are usually carefully customized. In particular, despite all recent work create two contrastive views, they differ in a variety of view augmentations, architectures, and objectives. It remains an open question how to build your graph contrastive learning model from scratch for particular graph tasks and datasets. In this work, we aim to fill this gap by studying how graph information is transformed and transferred during the contrastive learning process, and proposing an information-aware graph contrastive learning framework called InfoGCL. The key to the success of the proposed framework is to follow the Information Bottleneck principle to reduce the mutual information between contrastive parts while keeping task-relevant information intact at both the levels of the individual module and the entire framework so that the information loss during graph representation learning can be minimized. We show for the first time that all recent graph contrastive learning methods can be unified by our framework. Based on theoretical and empirical analysis on benchmark graph datasets, we show that InfoGCL achieves state-of-the-art performance in the settings of both graph classification and node classification tasks.

Deep Multi-Instance Contrastive Learning with Dual Attention for Anomaly Precursor Detection

Prognostics or early detection of incipient faults by leveraging the monitoring time series data in complex systems is valuable to automatic system management and predictive maintenance. However, this task is challenging. First, learning the multi-dimensional heterogeneous time series data with various anomaly types is hard. Second, the precise annotation of anomaly incipient periods is lacking. Third, the interpretable tools to diagnose the precursor symptoms are lacking. Despite some recent progresses, few of the existing approaches can jointly resolve these challenges. In this paper, we propose MCDA, a deep multi-instance contrastive learning approach with dual attention, to detect anomaly precursor. MCDA utilizes multi-instance learning to model the uncertainty of precursor period and employs recurrent neural network with tensorized hidden states to extract precursor features encoded in temporal dynamics as well as the correlations between different pairs of time series. A dual attention mechanism on both temporal aspect and time series variables is developed to pinpoint the time period and the sensors the precursor symptoms are involved in. A contrastive loss is designed to address the issue that annotated anomalies are few. To the best of our knowledge, MCDA is the first method studying the problem of ‘when’ and ‘where’ for the anomaly precursor detection simultaneously. Extensive experiments on both synthetic and real datasets demonstrate the effectiveness of MCDA.

Improving neural network robustness through neighborhood preserving layers

One major source of vulnerability of neural nets in classification tasks is from overparameterized fully connected layers near the end of the network. In this paper, we propose a new neighborhood preserving layer which can replace these fully connected layers to improve the network robustness. Networks including these neighborhood preserving layers can be trained efficiently. We theoretically prove that our proposed layers are more robust against distortion because they effectively control the magnitude of gradients. Finally, we empirically show that networks with our proposed layers are more robust against state-of-the-art gradient descent-based attacks, such as a PGD attack on the benchmark image classification datasets MNIST and CIFAR10.