Prediction refers to the process of using available information or past data to make an informed estimation or forecast about future events, outcomes, or trends. It involves analyzing patterns, relationships, and historical data to make an educated guess or projection about what is likely to happen in a given situation.

Posts

Confidence and Dispersity Speak: Characterizing Prediction Matrix for Unsupervised Accuracy Estimation

Confidence and Dispersity Speak: Characterizing Prediction Matrix for Unsupervised Accuracy Estimation This work aims to assess how well a model performs under distribution shifts without using labels. While recent methods study prediction confidence, this work reports prediction dispersity is another informative cue. Confidence reflects whether the individual prediction is certain; dispersity indicates how the overall predictions are distributed across all categories. Our key insight is that a well-performing model should give predictions with high confidence and high dispersity. That is, we need to consider both properties so as to make more accurate estimates. To this end, we use the nuclear norm that has been shown to be effective in characterizing both properties. Extensive experiments validate the effectiveness of nuclear norm for various models (e.g., ViT and ConvNeXt), different datasets (e.g., ImageNet and CUB-200), and diverse types of distribution shifts (e.g., style shift and reproduction shift). We show that the nuclear norm is more accurate and robust in accuracy estimation than existing methods. Furthermore, we validate the feasibility of other measurements (e.g., mutual information maximization) for characterizing dispersity and confidence. Lastly, we investigate the limitation of the nuclear norm, study its improved variant under severe class imbalance, and discuss potential directions.

Confidence and Dispersity Speak: Characterizing Prediction Matrix for Unsupervised Accuracy Estimation

Confidence and Dispersity Speak: Characterizing Prediction Matrix for Unsupervised Accuracy Estimation This work aims to assess how well a model performs under distribution shifts without using labels. While recent methods study prediction confidence, this work reports prediction dispersity is another informative cue. Confidence reflects whether the individual prediction is certain, dispersity indicates how the overall predictions are distributed across all categories. Our key insight is that a well performing model should give predictions with high confidence and high dispersity. That is, we need to consider both properties so as to make more accurate estimates. To this end, we use the nuclear norm that has been shown to be effective in characterizing both properties. Extensive experiments validate the effectiveness of nuclear norm for various models (e.g., ViT and ConvNeXt), different datasets (e.g., ImageNet and CUB 200), and diverse types of distribution shifts (e.g., style shift and reproduction shift). We show that the nuclear norm is more accurate and robust in accuracy estimation than existing methods. Furthermore, we validate the feasibility of other measurements (e.g., mutual information maximization) for characterizing dispersity and confidence. Lastly, we investigate the limitation of the nuclear norm, study its improved variant under severe class imbalance, and discuss potential directions.

SmartSlice: Dynamic, self optimization of application’s QoS requests to 5G networks (arXiv)

Read SmartSlice: Dynamic, self optimization of application’s QoS requests to 5G networks (arXiv). Applications can tailor a network slice by specifying a variety of QoS attributes related to application specific performance, function or operation. However, some QoS attributes like guaranteed bandwidth required by the application do vary over time. For example, network bandwidth needs of video streams from surveillance cameras can vary a lot depending on the environmental conditions and the content in the video streams. In this paper, we propose a novel, dynamic QoS attribute prediction technique that assists any application to make optimal resource reservation requests at all times. Standard forecasting using traditional cost functions like MAE, MSE, RMSE, MDA, etc. don’t work well because they do not take into account the direction (whether the forecasting of resources is more or less than needed), magnitude (by how much the forecast deviates, and in which direction), or frequency (how many times the forecast deviates from actual needs, and in which direction). The direction, magnitude and frequency have a direct impact on the application’s accuracy of insights, and the operational costs. We propose a new, parameterized cost function that takes into account all three of them, and guides the design of a new prediction technique. To the best of our knowledge, this is the first work that considers time varying application requirements and dynamically adjusts slice QoS requests to 5G networks in order to ensure a balance between application’s accuracy and operational costs. In a real world deployment of a surveillance video analytics application over 17 cameras, we show that our technique outperforms other traditional forecasting methods, and it saves 34% of network bandwidth (over a ~24 hour period) when compared to a static, one time reservation.

Prediction of Early Recurrence of Hepatocellular Carcinoma after Resection using Digital Pathology Images Assessed by Machine Learning

Prediction of Early Recurrence of Hepatocellular Carcinoma after Resection using Digital Pathology Images Assessed by Machine Learning Hepatocellular carcinoma (HCC) is a representative primary liver cancer caused by long-term and repetitive liver injury. Surgical resection is generally selected as the radical cure treatment. Because the early recurrence of HCC after resection is associated with low overall survival, the prediction of recurrence after resection is clinically important. However, the pathological characteristics of the early recurrence of HCC have not yet been elucidated. We attempted to predict the early recurrence of HCC after resection based on digital pathologic images of hematoxylin and eosin-stained specimens and machine learning applying a support vector machine (SVM). The 158 HCC patients meeting the Milan criteria who underwent surgical resection were included in this study. The patients were categorized into three groups: Group I, patients with HCC recurrence within 1 year after resection (16 for training and 23 for test), Group II, patients with HCC recurrence between 1 and 2 years after resection (22 and 28), and Group III, patients with no HCC recurrence within 4 years after resection (31 and 38). The SVM-based prediction method separated the three groups with 89.9% (80/89) accuracy. Prediction of Groups I was consistent for all cases, while Group II was predicted to be Group III in one case, and Group III was predicted to be Group II in 8 cases. The use of digital pathology and machine learning could be used for highly accurate prediction of HCC recurrence after surgical resection, especially that for early recurrence. Currently, in most cases after HCC resection, regular blood tests and diagnostic imaging are used for follow-up observation, however, the use of digital pathology coupled with machine learning offers potential as a method for objective postoprative follow-up observation.